Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip R. Corlett is active.

Publication


Featured researches published by Philip R. Corlett.


Molecular Psychiatry | 2008

Substantia nigra/ventral tegmental reward prediction error disruption in psychosis

Graham K. Murray; Philip R. Corlett; Luke Clark; M Pessiglione; Andrew D. Blackwell; Garry D. Honey; Peter B. Jones; Edward T. Bullmore; Trevor W. Robbins; P. C. Fletcher

While dopamine systems have been implicated in the pathophysiology of schizophrenia and psychosis for many years, how dopamine dysfunction generates psychotic symptoms remains unknown. Recent theoretical interest has been directed at relating the known role of midbrain dopamine neurons in reinforcement learning, motivational salience and prediction error to explain the abnormal mental experience of psychosis. However, this theoretical model has yet to be explored empirically. To examine a link between psychotic experience, reward learning and dysfunction of the dopaminergic midbrain and associated target regions, we asked a group of first episode psychosis patients suffering from active positive symptoms and a group of healthy control participants to perform an instrumental reward conditioning experiment. We characterized neural responses using functional magnetic resonance imaging. We observed that patients with psychosis exhibit abnormal physiological responses associated with reward prediction error in the dopaminergic midbrain, striatum and limbic system, and we demonstrated subtle abnormalities in the ability of psychosis patients to discriminate between motivationally salient and neutral stimuli. This study provides the first evidence linking abnormal mesolimbic activity, reward learning and psychosis.


Trends in Cognitive Sciences | 2012

The role of default network deactivation in cognition and disease

Alan Anticevic; Michael W. Cole; John D. Murray; Philip R. Corlett; Xiao Jing Wang; John H. Krystal

A considerable body of evidence has accumulated over recent years on the functions of the default-mode network (DMN)--a set of brain regions whose activity is high when the mind is not engaged in specific behavioral tasks and low during focused attention on the external environment. In this review, we focus on DMN suppression and its functional role in health and disease, summarizing evidence that spans several disciplines, including cognitive neuroscience, pharmacological neuroimaging, clinical neuroscience, and theoretical neuroscience. Collectively, this research highlights the functional relevance of DMN suppression for goal-directed cognition, possibly by reducing goal-irrelevant functions supported by the DMN (e.g., mind-wandering), and illustrates the functional significance of DMN suppression deficits in severe mental illness.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens

Jeffrey W. Dalley; Kristjan Lääne; David E. H. Theobald; Hannah C. Armstrong; Philip R. Corlett; Yogita Chudasama; Trevor W. Robbins

Recent research has implicated the nucleus accumbens (NAc) in consolidating recently acquired goal-directed appetitive memories, including spatial learning and other instrumental processes. However, an important but unresolved issue is whether this forebrain structure also contributes to the consolidation of fundamental forms of appetitive learning acquired by Pavlovian associative processes. In addition, although dopaminergic and glutamatergic influences in the NAc have been implicated in instrumental learning, it is unclear whether similar mechanisms operate during Pavlovian conditioning. To evaluate these issues, the effects of posttraining intra-NAc infusions of D1, D2, and NMDA receptor antagonists, as well as d-amphetamine, were determined on Pavlovian autoshaping in rats, which assesses learning by discriminated approach behavior to a visual conditioned stimulus predictive of food reward. Intracerebral infusions were given either immediately after each conditioning session to disrupt early memory consolidation or after a delay of 24 h. Findings indicate that immediate, but not delayed, infusions of both D1 (SCH 23390) and NMDA (AP-5) receptor antagonists significantly impair learning on this task. By contrast, amphetamine and the D2 receptor antagonist sulpiride were without significant effect. These findings provide the most direct demonstration to date that D1 and NMDA receptors in the NAc contribute to, and are necessary for, the early consolidation of appetitive Pavlovian learning.


Progress in Neurobiology | 2010

Toward a Neurobiology of Delusions

Philip R. Corlett; Jane R. Taylor; Xiao Jing Wang; P. C. Fletcher; John H. Krystal

Delusions are the false and often incorrigible beliefs that can cause severe suffering in mental illness. We cannot yet explain them in terms of underlying neurobiological abnormalities. However, by drawing on recent advances in the biological, computational and psychological processes of reinforcement learning, memory, and perception it may be feasible to account for delusions in terms of cognition and brain function. The account focuses on a particular parameter, prediction error--the mismatch between expectation and experience--that provides a computational mechanism common to cortical hierarchies, fronto-striatal circuits and the amygdala as well as parietal cortices. We suggest that delusions result from aberrations in how brain circuits specify hierarchical predictions, and how they compute and respond to prediction errors. Defects in these fundamental brain mechanisms can vitiate perception, memory, bodily agency and social learning such that individuals with delusions experience an internal and external world that healthy individuals would find difficult to comprehend. The present model attempts to provide a framework through which we can build a mechanistic and translational understanding of these puzzling symptoms.


Psychopharmacology | 2009

From drugs to deprivation: a Bayesian framework for understanding models of psychosis

Philip R. Corlett; C. D. Frith; P. C. Fletcher

IntroductionVarious experimental manipulations, usually involving drug administration, have been used to produce symptoms of psychosis in healthy volunteers. Different drugs produce both common and distinct symptoms. A challenge is to understand how apparently different manipulations can produce overlapping symptoms. We suggest that current Bayesian formulations of information processing in the brain provide a framework that maps onto neural circuitry and gives us a context within which we can relate the symptoms of psychosis to their underlying causes. This helps us to understand the similarities and differences across the common models of psychosis.Materials and methodsThe Bayesian approach emphasises processing of information in terms of both prior expectancies and current inputs. A mismatch between these leads us to update inferences about the world and to generate new predictions for the future. According to this model, what we experience shapes what we learn, and what we learn modifies how we experience things.DiscussionThis simple idea gives us a powerful and flexible way of understanding the symptoms of psychosis where perception, learning and inference are deranged. We examine the predictions of the cognitive model in light of what we understand about the neuropharmacology of psychotomimetic drugs and thereby attempt to account for the common and the distinctive effects of NMDA receptor antagonists, serotonergic hallucinogens, cannabinoids and dopamine agonists.ConclusionBy acknowledging the importance of perception and perceptual aberration in mediating the positive symptoms of psychosis, the model also provides a useful setting in which to consider an under-researched model of psychosis—sensory deprivation.


Journal of Psychopharmacology | 2007

From prediction error to psychosis: ketamine as a pharmacological model of delusions

Philip R. Corlett; Garry D. Honey; P. C. Fletcher

Recent cognitive neuropsychiatric models of psychosis emphasize the role of attentional disturbances and inappropriate incentive learning in the development of deLusions. These models highlight a pre-psychotic period in which the patient experiences perceptual and attentional disruptions. Irrelevant details and numerous associations between stimuli, thoughts and percepts are imbued with inappropriate significance and the attempt to rationalize and account for these bizarre experiences results in the formation of delusions. The present paper discusses delusion formation in terms of basic associative learning processes. Such processes are driven by prediction error signaLs. Prediction error refers to mismatches between an organisms expectation in a given environment and what actually happens and it is signalled by both dopaminergic and glutamatergic mechanisms. Disruption of these neurobiological systems may underie delusion formation. We review similarities between acute psychosis and the psychotic state induced by the NMDA receptor antagonist drug ketamine, which impacts upon both dopaminergic and glutamatergic function. We conclude by suggesting that ketamine may provide an appropriate model to investigate the formative stages of symptom evolution in schizophrenia, and thereby provide a window into the earliest and otherwise inaccessible aspects of the disease process.


Proceedings of the National Academy of Sciences of the United States of America | 2012

NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia

Alan Anticevic; Mark Gancsos; John D. Murray; Grega Repovs; Naomi Driesen; Debra J. Ennis; Mark J. Niciu; Peter T. Morgan; Toral Surti; Michael H. Bloch; Mark A. Smith; Xiao Jing Wang; John H. Krystal; Philip R. Corlett

Glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) receptors is vital for the cortical computations underlying cognition and might be disrupted in severe neuropsychiatric illnesses such as schizophrenia. Studies on this topic have been limited to processes in local circuits; however, cognition involves large-scale brain systems with multiple interacting regions. A prominent feature of the human brain’s global architecture is the anticorrelation of default-mode vs. task-positive systems. Here, we show that administration of an NMDA glutamate receptor antagonist, ketamine, disrupted the reciprocal relationship between these systems in terms of task-dependent activation and connectivity during performance of delayed working memory. Furthermore, the degree of this disruption predicted task performance and transiently evoked symptoms characteristic of schizophrenia. We offer a parsimonious hypothesis for this disruption via biophysically realistic computational modeling, namely cortical disinhibition. Together, the present findings establish links between glutamate’s role in the organization of large-scale anticorrelated neural systems, cognition, and symptoms associated with schizophrenia in humans.


The Journal of Neuroscience | 2009

Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans

Sanne de Wit; Philip R. Corlett; Michael R. F. Aitken; Anthony Dickinson; P. C. Fletcher

According to dual-system accounts, instrumental learning is supported by both a goal-directed and a habitual system. Although behavioral control by the goal-directed system, through outcome–action associations, dominates with moderate training, stimulus–response associations are thought to form concurrently in the habit system. It is therefore challenging to isolate the neural substrate of the goal-directed system in neuroimaging research with healthy human volunteers. Recently, however, de Wit et al. (2007) developed an instrumental discrimination task that distinguishes between goal-directed and habit-based responding. In this task, cues are congruent, unrelated, or incongruent with subsequent outcomes. Whereas performance on congruent and control trials can be supported by both the goal-directed and habitual system, performance on the incongruent discrimination relies solely on the habit system. In the present study, we used this task with healthy participants undergoing functional magnetic resonance imaging to demonstrate that engagement of the goal-directed system during learning is reflected in increased activity in the ventromedial prefrontal cortex. Moreover, using a subsequent outcome devaluation manipulation, we show that this area is involved in guiding decision making when goal values change, even in the absence of external cues to guide performance. We can therefore exclude a purely Pavlovian account of ventromedial prefrontal function and unequivocally demonstrate its involvement in the acquisition as well as deployment of goal-directed knowledge.


Neuron | 2004

Prediction Error during Retrospective Revaluation of Causal Associations in Humans: fMRI Evidence in Favor of an Associative Model of Learning

Philip R. Corlett; Michael R. F. Aitken; Anthony Dickinson; David R. Shanks; Garry D. Honey; Rebekah Honey; Trevor W. Robbins; Edward T. Bullmore; P. C. Fletcher

Associative learning theory assumes that prediction error is a driving force in learning. A competing view, probabilistic contrast (PC) theory, is that learning and prediction error are unrelated. We tested a learning phenomenon that has proved troublesome for associative theory--retrospective revaluation--to evaluate these two models. We previously showed that activation in right lateral prefrontal cortex (PFC) provides a reliable signature for the presence of prediction error. Thus, if the associative view is correct, retrospective revaluation should be accompanied by right lateral PFC activation. PC theory would be supported by the absence of this activation. Right PFC and ventral striatal activation occurred during retrospective revaluation, supporting the associative account. Activations appeared to reflect the degree of revaluation, predicting later brain responses to revalued cues. Our results support a modified associative account of retrospective revaluation and demonstrate the potential of functional neuroimaging as a tool for evaluating competing learning models.


Neurobiology of Learning and Memory | 2011

Aberrant learning and memory in addiction.

Mary M. Torregrossa; Philip R. Corlett; Jane R. Taylor

Over the past several years, drug addiction has increasingly been accepted to be a disease of the brain as opposed to simply being due to a lack of willpower or personality flaw. Exposure to addictive substances has been shown to create enduring changes in brain structure and function that are thought to underlie the transition to addiction. Specific genetic and environmental vulnerability factors also influence the impact of drugs of abuse on the brain and can enhance the likelihood of becoming an addict. Long-lasting alterations in brain function have been found in neural circuits that are known to be responsible for normal appetitive learning and memory processes and it has been hypothesized that drugs of abuse enhance positive learning and memory about the drug while inhibiting learning about the negative consequences of drug use. Therefore, the addicts behavior becomes increasingly directed towards obtaining and using drugs of abuse, while at the same time developing a poorer ability to stop using, even when the drug is less rewarding or interferes with functioning in other facets of life. In this review we will discuss the clinical evidence that addicted individuals have altered learning and memory and describe the possible neural substrates of this dysfunction. In addition, we will explore the pre-clinical evidence that drugs of abuse cause a progressive disorder of learning and memory, review the molecular and neurobiological changes that may underlie this disorder, determine the genetic and environmental factors that may increase vulnerability to addiction, and suggest potential strategies for treating addiction through manipulations of learning and memory.

Collaboration


Dive into the Philip R. Corlett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Absalom

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge