Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip R. Gafken is active.

Publication


Featured researches published by Philip R. Gafken.


Cell | 2002

Dot1p Modulates Silencing in Yeast by Methylation of the Nucleosome Core

Fred W. van Leeuwen; Philip R. Gafken; Daniel E. Gottschling

DOT1 was originally identified as a gene affecting telomeric silencing in S. cerevisiae. We now find that Dot1p methylates histone H3 on lysine 79, which maps to the top and bottom of the nucleosome core. Methylation occurs only when histone H3 is assembled in chromatin. In vivo, Dot1p is solely responsible for this methylation and methylates approximately 90% of histone H3. In dot1delta cells, silencing is compromised and silencing proteins become redistributed at the expense of normally silenced loci. We suggest that methylation of histone H3 lysine 79 limits silencing to discrete loci by preventing the binding of Sir proteins elsewhere along the genome. Because Dot1p and histone H3 are conserved, similar mechanisms are likely at work in other eukaryotes.


The EMBO Journal | 2006

Myc influences global chromatin structure.

Paul S. Knoepfler; Xiao Yong Zhang; Pei Feng Cheng; Philip R. Gafken; Steven B. McMahon; Robert N. Eisenman

The family of myc proto‐oncogenes encodes transcription factors (c‐, N‐, and L‐Myc) that regulate cell growth and proliferation and are involved in the etiology of diverse cancers. Myc proteins are thought to function by binding and regulating specific target genes. Here we report that Myc proteins are required for the widespread maintenance of active chromatin. Disruption of N‐myc in neuronal progenitors and other cell types leads to nuclear condensation accompanied by large‐scale changes in histone modifications associated with chromatin inactivation, including hypoacetylation and altered methylation. These effects are largely reversed by exogenous Myc as well as by differentiation and are mimicked by the Myc antagonist Mad1. The first chromatin changes are evident within 6 h of Myc loss and lead to changes in chromatin structure. Myc widely influences chromatin in part through upregulation of the histone acetyltransferase GCN5. This study provides the first evidence for regulation of global chromatin structure by an oncoprotein and may explain the broad effects of Myc on cell behavior and tumorigenesis.


Nature Biotechnology | 2011

A targeted proteomics–based pipeline for verification of biomarkers in plasma

Jeffrey R. Whiteaker; Chenwei Lin; Jacob Kennedy; Liming Hou; Mary Trute; Izabela Sokal; Ping Yan; Regine M. Schoenherr; Lei Zhao; Uliana J. Voytovich; Karen S. Kelly-Spratt; Alexei L. Krasnoselsky; Philip R. Gafken; Jason M. Hogan; Lisa A. Jones; Pei Wang; Lynn M. Amon; Lewis A. Chodosh; Peter S. Nelson; Martin W. McIntosh; Christopher J. Kemp; Amanda G. Paulovich

High-throughput technologies can now identify hundreds of candidate protein biomarkers for any disease with relative ease. However, because there are no assays for the majority of proteins and de novo immunoassay development is prohibitively expensive, few candidate biomarkers are tested in clinical studies. We tested whether the analytical performance of a biomarker identification pipeline based on targeted mass spectrometry would be sufficient for data-dependent prioritization of candidate biomarkers, de novo development of assays and multiplexed biomarker verification. We used a data-dependent triage process to prioritize a subset of putative plasma biomarkers from >1,000 candidates previously identified using a mouse model of breast cancer. Eighty-eight novel quantitative assays based on selected reaction monitoring mass spectrometry were developed, multiplexed and evaluated in 80 plasma samples. Thirty-six proteins were verified as being elevated in the plasma of tumor-bearing animals. The analytical performance of this pipeline suggests that it should support the use of an analogous approach with human samples.


Analytical Biochemistry | 2003

Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4.

Christine M Smith; Philip R. Gafken; Zhongli Zhang; Daniel E. Gottschling; Jean B. Smith; David L. Smith

Electrospray ionization mass spectrometry, a leading method for the quantification of biomolecules, is useful for the analysis of posttranslational modifications of proteins. Here we describe a mass spectrometric approach for determining levels of acetylation at individual lysine residues within the amino-terminal tail of histone H4. Because of the high density of acetylatable lysine residues within this short span of amino acids, collision-induced dissociation tandem mass spectrometry was required. In addition, it was necessary to develop an algorithm to determine the fraction of acetylation at specific lysine residues from fragment ions containing more than one lysine residue. This is the first report of direct measurement of endogeneous levels of acetylation at individual lysine residues within the amino-terminal tail of yeast histone H4 and is the first use of tandem mass spectrometry for quantification of peptides containing multiple sites of modification.


Nature Structural & Molecular Biology | 2010

Dynamic changes in histone acetylation regulate origins of DNA replication

Ashwin Unnikrishnan; Philip R. Gafken; Toshio Tsukiyama

Although histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here we describe an efficient single-step method to specifically purify histones located around an origin of replication from Saccharomyces cerevisiae. Using high-resolution MS, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that acetylation of histone H3 and H4 is dynamically regulated around an origin of replication, at the level of multiply acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S phase.


Journal of Cell Biology | 2007

Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC

Joell L. Solan; Lucrecia Márquez-Rosado; Paul L. Sorgen; Perry J. Thornton; Philip R. Gafken; Paul D. Lampe

Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.


The Journal of Neuroscience | 2008

Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance.

Robert Meller; Simon John Thompson; Theresa A. Lusardi; Andrea Nicole Ordonez; Michelle D. Ashley; Veronica Jessick; Weihzen Wang; Daniel John Torrey; David C. Henshall; Philip R. Gafken; Julie A. Saugstad; Zhi-Gang Xiong; Roger P. Simon

Ischemic tolerance is an endogenous neuroprotective mechanism in brain and other organs, whereby prior exposure to brief ischemia produces resilience to subsequent normally injurious ischemia. Although many molecular mechanisms mediate delayed (gene-mediated) ischemic tolerance, the mechanisms underlying rapid (protein synthesis-independent) ischemic tolerance are relatively unknown. Here we describe a novel mechanism for the induction of rapid ischemic tolerance mediated by the ubiquitin–proteasome system. Rapid ischemic tolerance is blocked by multiple proteasome inhibitors [carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), MG115 (carbobenzoxy-l-leucyl-l-leucyl-l-norvalinal), and clasto-lactacystin-β-lactone]. A proteomics strategy was used to identify ubiquitinated proteins after preconditioning ischemia. We focused our studies on two actin-binding proteins of the postsynaptic density that were ubiquitinated after rapid preconditioning: myristoylated, alanine-rich C-kinase substrate (MARCKS) and fascin. Immunoblots confirm the degradation of MARCKS and fascin after preconditioning ischemia. The loss of actin-binding proteins promoted actin reorganization in the postsynaptic density and transient retraction of dendritic spines. This rapid and reversible synaptic remodeling reduced NMDA-mediated electrophysiological responses and renders the cells refractory to NMDA receptor-mediated toxicity. The dendritic spine retraction and NMDA neuroprotection after preconditioning ischemia are blocked by actin stabilization with jasplakinolide, as well as proteasome inhibition with MG132. Together these data suggest that rapid tolerance results from changes to the postsynaptic density mediated by the ubiquitin–proteasome system, rendering neurons resistant to excitotoxicity.


Journal of Biological Chemistry | 2010

Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry.

Fionnuala Morrish; Jhoanna Noonan; Carissa Perez-Olsen; Philip R. Gafken; Matthew Fitzgibbon; Joanne K. Kelleher; Marc VanGilst; David M. Hockenbery

Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [13C6]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of 13C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc−/− and myc+/+ Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of 13C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in 13C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals.


Journal of Neurochemistry | 2004

Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents.

Carol D. Farr; Philip R. Gafken; Angela D. Norbeck; Catalin E. Doneanu; Martha Stapels; Douglas F. Barofsky; Manabu Minami; Julie A. Saugstad

We used a proteomic approach to identify novel proteins that may regulate metabotropic glutamate receptor 5 (mGluR5) responses by direct or indirect protein interactions. This approach does not rely on the heterologous expression of proteins and offers the advantage of identifying protein interactions in a native environment. The mGluR5 protein was immunoprecipitated from rat brain lysates; co‐immunoprecipitating proteins were analyzed by mass spectrometry and identified peptides were matched to protein databases to determine the correlating parent proteins. This proteomic approach revealed the interaction of mGluR5 with known regulatory proteins, as well as novel proteins that reflect previously unidentified molecular constituents of the mGluR5‐signaling complex. Immunoblot analysis confirmed the interaction of high confidence proteins, such as phosphofurin acidic cluster sorting protein 1, microtubule‐associated protein 2a and dynamin 1, as mGluR5‐interacting proteins. These studies show that a proteomic approach can be used to identify candidate interacting proteins. This approach may be particularly useful for neurobiology applications where distinct protein interactions within a signaling complex can dramatically alter the outcome of the response to neurotransmitter release, or the disruption of normal protein interactions can lead to severe neurological and psychiatric disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Heritable chromatin structure: Mapping “memory” in histones H3 and H4

Christine M. Smith; Zara W. Haimberger; Catherine Johnson; Alex J. Wolf; Philip R. Gafken; Zhongli Zhang; Mark R. Parthun; Daniel E. Gottschling

Telomeric position effect in Saccharomyces cerevisiae is a chromatin-mediated phenomenon in which telomere proximal genes are repressed (silenced) in a heritable, but reversible, fashion. Once a transcriptional state (active or silenced) is established, however, there is a strong tendency for that state to be propagated. Twenty-five years ago, H. Weintraub and colleagues suggested that such heritability could be mediated by posttranslational modification of chromatin [Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M. & Grainger, R. M. (1977) Cold Spring Harbor Symp. Quant. Biol. 42, 401–407]. To identify potential sites within the chromatin that might act as sources of “memory” for the heritable transmission, we performed a genetic screen to isolate mutant alleles of the histones H3 and H4 genes that would “lock” telomeric marker genes into a silenced state. We identified mutations in the NH2-terminal tail and core of both histones; most of the amino acid changes mapped adjacent to lysines that are known sites of acetylation or methylation. We developed a method using MS to quantify the level of acetylation at each lysine within the histone H4 NH2-terminal tail in these mutants. We discovered that each of these mutants had a dramatic reduction in the level of acetylation at lysine 12 within the histone H4 tail. We propose that this lysine serves as a “memory mark” for propagating the expression state of a telomeric gene: when it is unacetylated, silent chromatin will be inherited; when it is acetylated an active state will be inherited.

Collaboration


Dive into the Philip R. Gafken's collaboration.

Top Co-Authors

Avatar

Yuko Ogata

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Gottschling

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa A. Jones

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie J. Lee

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Hansen

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge