Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip R. Miller is active.

Publication


Featured researches published by Philip R. Miller.


Analyst | 2011

Microneedle array-based carbon paste amperometric sensors and biosensors

Joshua Ray Windmiller; Nandi Zhou; Min-Chieh Chuang; Gabriela Valdés-Ramírez; Padmanabhan Santhosh; Philip R. Miller; Roger J. Narayan; Joseph Wang

The design and characterization of a microneedle array-based carbon paste electrode towards minimally invasive electrochemical sensing are described. Arrays consisting of 3 × 3 pyramidal microneedle structures, each with an opening of 425 µm, were loaded with a metallized carbon paste transducer. The renewable nature of carbon paste electrodes enables the convenient packing of hollow non-planar microneedles with pastes that contain assorted catalysts and biocatalysts. Smoothing the surface results in good microelectrode-to-microelectrode uniformity. Optical and scanning electron micrographs shed useful insights into the surface morphology at the microneedle apertures. The attractive performance of the novel microneedle electrode arrays is illustrated in vitro for the low-potential detection of hydrogen peroxide at rhodium-dispersed carbon paste microneedles and for lactate biosensing by the inclusion of lactate oxidase in the metallized carbon paste matrix. Highly repeatable sensing is observed following consecutive cycles of packing/unpacking the carbon paste. The operational stability of the array is demonstrated as well as the interference-free detection of lactate in the presence of physiologically relevant levels of ascorbic acid, uric acid, and acetaminophen. Upon addressing the biofouling effects associated with on-body sensing, the microneedle carbon paste platform would be attractive for the subcutaneous electrochemical monitoring of a number of physiologically relevant analytes.


Talanta | 2012

Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis.

Philip R. Miller; Shelby A. Skoog; Thayne L. Edwards; DeAnna M. Lopez; David R. Wheeler; Dulce C. Arango; Xiaoyin Xiao; Susan M. Brozik; Joseph Wang; Roger J. Narayan

The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure(®)) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-h period.


Biomicrofluidics | 2011

Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing.

Philip R. Miller; Shaun D. Gittard; Thayne L. Edwards; DeAnna M. Lopez; Xiaoyin Xiao; David R. Wheeler; Nancy A. Monteiro-Riviere; Susan M. Brozik; Roger J. Narayan

In this study, carbon fiber electrodes were incorporated within a hollow microneedle array, which was fabricated using a digital micromirror device-based stereolithography instrument. Cell proliferation on the acrylate-based polymer used in microneedle fabrication was examined with human dermal fibroblasts and neonatal human epidermal keratinocytes. Studies involving full-thickness cadaveric porcine skin and trypan blue dye demonstrated that the hollow microneedles remained intact after puncturing the outermost layer of cadaveric porcine skin. The carbon fibers underwent chemical modification in order to enable detection of hydrogen peroxide and ascorbic acid; electrochemical measurements were demonstrated using integrated electrode-hollow microneedle devices.


Tissue Engineering Part C-methods | 2010

In Situ Collagen Polymerization of Layered Cell-Seeded Electrospun Scaffolds for Bone Tissue Engineering Applications

Seth D. McCullen; Philip R. Miller; Shaun D. Gittard; Russell E. Gorga; Behnam Pourdeyhimi; Roger J. Narayan; Elizabeth G. Loboa

Electrospun scaffolds have been studied extensively for their potential use in bone tissue engineering applications. However, inherent issues with the electrospinning approach limit the thickness of these scaffolds and constrain their use for repair of critical-sized bone defects. One method to increase overall scaffold thickness is to bond multiple electrospun scaffolds together with a biocompatible gel. The objective of this study was to determine whether multiple human adipose-derived stem cell (hASC-seeded electrospun, nanofibrous scaffolds could be layered via in situ collagen assembly and whether the addition of laser-ablated micron-sized pores within the electrospun scaffold layers was beneficial to the bonding process. Pores were created by a laser ablation technique. We hypothesized that the addition of micron-sized pores within the electrospun scaffolds would encourage collagen integration between scaffold layers, and promote osteogenic differentiation of hASCs seeded within the layered electrospun scaffolds. To evaluate the benefit of assembled scaffolds with and without engineered pores, hASCs were seeded on individual electrospun scaffolds, hASC-seeded scaffolds were bonded with type I collagen, and the assembled ∼3-mm-thick constructs were cultured for 3 weeks to examine their potential as bone tissue engineering scaffolds. Assembled electrospun scaffolds/collagen gel constructs using electrospun scaffolds with pores resulted in enhanced hASC viability, proliferation, and mineralization of the scaffolds after 3 weeks in vitro compared to constructs using electrospun scaffolds without pores. Scanning electron microscopy and histological examination revealed that the assembled constructs that included laser-ablated electrospun scaffolds were able to maintain a contracted structure and were not delaminated, unlike assembled constructs containing nonablated electrospun scaffolds. This is the first study to show that the introduction of engineered pores in electrospun scaffolds assists with multilayered scaffold integration, resulting in thick constructs potentially suitable for use as scaffolds for bone tissue engineering or repair of critical bone defects.


Faraday Discussions | 2011

Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles.

Shaun D. Gittard; Philip R. Miller; Ryan D. Boehm; Aleksandr Ovsianikov; Boris N. Chichkov; Jeremy Heiser; John Gordon; Nancy A. Monteiro-Riviere; Roger J. Narayan

Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy.


Journal of Materials Chemistry B | 2016

Microneedle-based sensors for medical diagnosis

Philip R. Miller; Roger J. Narayan

Recently microneedles have been explored for transdermal monitoring of biomarkers with the goal to achieve time-sensitive clinical information for routine point-of-care health monitoring. In this highlight we provide a general overview of recent progress in microneedle-based sensing research, including: (a) glucose monitoring, (b) ex vitro microneedle diagnostic systems for general health monitoring with an emphasis on sensor construction, and (c) in vivo use of microneedle sensors.


Advanced Healthcare Materials | 2014

Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+).

Philip R. Miller; Xiaoyin Xiao; Igal Brener; D. Bruce Burckel; Roger J. Narayan

The determination of electrolytes is invaluable for point of care diagnostic applications. An ion selective transdermal microneedle sensor is demonstrated for potassium by integrating a hollow microneedle with a microfluidic chip to extract fluid through a channel towards a downstream solid-state ion-selective-electrode (ISE). 3D porous carbon and 3D porous graphene electrodes, made via interference lithography, are compared as solid-state transducers for ISEs and evaluated for electrochemical performance, stability, and selectivity. The porous carbon K(+) ISEs show better performance than the porous graphene K(+) ISEs, capable of measuring potassium across normal physiological concentrations in the presence of interfering ions with greater stability. This new microfluidic/microneedle platform shows promise for medical applications.


AIP Advances | 2011

Modification of microneedles using inkjet printing

Ryan D. Boehm; Philip R. Miller; S L Hayes; Nancy A. Monteiro-Riviere; Roger J. Narayan

In this study, biodegradable acid anhydride copolymer microneedles containing quantum dots were fabricated by means of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing. Nanoindentation was performed to obtain the hardness and the Youngs modulus of the biodegradable acid anhydride copolymer. Imaging of quantum dots within porcine skin was accomplished by means of multiphoton microscopy. Our results suggest that the combination of visible light dynamic mask micro-stereolithography-micromolding and inkjet printing enables fabrication of solid biodegradable microneedles with a wide range of geometries as well as a wide range of pharmacologic agent compositions.


Sensors and Actuators B-chemical | 2012

Multiplexed and Switchable Release of Distinct Fluids from Microneedle Platforms via Conducting Polymer Nanoactuators for Potential Drug Delivery.

Gabriela Valdés-Ramírez; Joshua Ray Windmiller; Jonathan C. Claussen; Alexandra G. Martinez; Filiz Kuralay; Ming Zhou; Nandi Zhou; Philip R. Miller; Roger J. Narayan; Joseph Wang

We report on the development of a microneedle-based multiplexed drug delivery actuator that enables the controlled delivery of multiple therapeutic agents. Two individually-addressable channels on a single microneedle array, each paired with its own reservoir and conducting polymer nanoactuator, are used to deliver various permutations of two unique chemical species. Upon application of suitable redox potentials to the selected actuator, the conducting polymer is able to undergo reversible volume changes, thereby serving to release a model chemical agent in a controlled fashion through the corresponding microneedle channels. Time-lapse videos offer direct visualization and characterization of the membrane switching capability and, along with calibration investigations, confirm the ability of the device to alternate the delivery of multiple reagents from individual microneedles of the array with higher precision and temporal resolution than conventional drug delivery actuators. Analytical modeling offers prediction of the volumetric flow rate through a single microneedle and accordingly can be used to assist in the design of subsequent microneedle arrays. The robust solid-state design and lack of mechanical components circumvent reliability issues that challenge fragile conventional microelectromechanical drug delivery devices. This proof-of-concept study demonstrates the potential of the drug delivery actuator system to aid in the rapid administration of multiple therapeutic agents and indicates the potential to counteract diverse biomedical conditions.


Biofabrication | 2012

Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles

Ryan D. Boehm; Philip R. Miller; Ritika Singh; Akash Shah; Shane J. Stafslien; Justin Daniels; Roger J. Narayan

Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez(®) AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez(®) AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez(®) AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections.

Collaboration


Dive into the Philip R. Miller's collaboration.

Top Co-Authors

Avatar

Roger J. Narayan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ryan D. Boehm

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Thayne L. Edwards

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Susan M. Brozik

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Igal Brener

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Joseph Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Shaun D. Gittard

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyin Xiao

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

David R. Wheeler

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Justin T. Baca

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge