Philip Riby
Liverpool John Moores University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip Riby.
Environmental Pollution | 2009
William Hartley; Nicholas M. Dickinson; Philip Riby; Nicholas W. Lepp
Degraded land that is historically contaminated from different sources of industrial waste provides an opportunity for conversion to bioenergy fuel production and also to increase sequestration of carbon in soil through organic amendments. In pot experiments, As mobility was investigated in three different brownfield soils amended with green waste compost (GWC, 30% v/v) or biochar (BC, 20% v/v), planted with Miscanthus. Using GWC improved crop yield but had little effect on foliar As uptake, although the proportion of As transferred from roots to foliage differed considerably between the three soils. It also increased dissolved carbon concentrations in soil pore water that influenced Fe and As mobility. Effects of BC were less pronounced, but the impacts of both amendments on SOC, Fe, P and pH are likely to be critical in the context of As leaching to ground water. Growing Miscanthus had no measurable effect on As mobility.
Environmental Pollution | 2010
Rafael Clemente; William Hartley; Philip Riby; Nicholas M. Dickinson; Nicholas W. Lepp
Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (approximately 900, 200 and 500 mg kg(-1), respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils.
Environmental Pollution | 2010
William Hartley; Nicholas M. Dickinson; Philip Riby; Elizabeth Leese; Jackie Morton; Nicholas W. Lepp
Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils.
Journal of Environmental Management | 2016
William Hartley; Philip Riby; James Waterson
Previous studies have demonstrated both beneficial and detrimental effects on soil properties from biochar incorporation. Several biochars, with different feedstock origins, were evaluated for their effectiveness at improving soil quality of a sandy agricultural soil. A pot trial was used to investigate aggregate stability and microbial activity, pore water trace element mobility and micronutrient concentrations in grain of spring wheat after incorporation of three biochars. The feedstocks for biochar production were selected because they were established UK waste products, namely oversize woody material from green waste composting facilities, and rhododendron and soft wood material from forest clearance operations. Biochars were incorporated into the soil at a rate of 5% v/v. Aggregate stability was improved following addition of oversize biochar whilst microbial activity increased in all treatments. Dissolved organic carbon (DOC) concentrations in soil pore water from biochar-treated soils were raised, whilst micronutrient concentrations in wheat grain grown in the treated soils were significantly reduced. It was concluded that incorporation of biochar to temperate agricultural soils requires caution as it may result in reductions of essential grain micronutrients required for human health, whilst the effect on aggregate stability may be linked to organic carbon functional groups on biochar surfaces and labile carbon released from the char into the soil system.
Environmental Pollution | 2011
William Hartley; Philip Riby; Nicholas M. Dickinson; R. Brian E. Shutes; Shaun Sparke; Miklas Scholz
There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water (~14 mg l(-1)). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment.
Environmental Pollution | 2009
Jennifer C. Sneddon; Rafael Clemente; Philip Riby; Nicholas W. Lepp
Spent shotgun pellets may contaminate terrestrial ecosystems. We examined the fate of elements originating from shotgun pellets in pasture and woodland ecosystems. Two source-receptor pathways: i) soil-soil pore water-plant and ii) whole earthworm/worm gut contents--washed and unwashed small mammal hair were investigated. Concentrations of Pb and associated contaminants were higher in soils from shot areas than controls. Arsenic and lead concentrations were positively correlated in soils, soil pore water and associated biota. Element concentrations in biota were below statutory levels in all locations. Bioavailability of lead to small mammals, based on concentrations in washed body hair was low. Lead movement from soil water to higher trophic levels was minor compared to lead adsorbed onto body surfaces. Lead was concentrated in earthworm gut and some plants. Results indicate that managed game shooting presents minimal risk in terms of element transfer to soils and their associated biota.
Analyst | 1999
Christopher J. Mason; Mark Edwards; Philip Riby; Graham Coe
An accelerated procedure for the determination of total Kjeldahl nitrogen in certified reference Chinese loam soil and real samples has been developed. This method makes use of open-vessel single-mode microwave technology. When a direct comparison was made with a fully optimised thermal Kjeldahl digestion method an 8-fold decrease in digestion time was observed, reducing the time required for the digestion process from 120 min to 15 min for certified reference soil, and a 2-fold decrease for a real soil sample of S.E. England soil. Extracted nitrogen was determined colorimetrically in a flow injection system making use of the Berthelot reaction. A comparison was made between the use of a heated water bath and a microwave oven for the development of the indophenol dye. Development times were reduced from 140 s down to 15 s, resulting in an increase in sample throughput from 36 samples per hour on the thermally heated system to 60 samples per hour on the microwave-heated system. The limit of detection by the 3ς method was 14 µg l–1 of nitrogen for the thermally heated system while a limit of detection of 6 µg l–1 was achieved on the microwave-based system. A linear calibration of 2 orders of magnitude was achieved for both systems. The combination of the microwave Kjeldahl and flow injection with microwave-enhanced colour development greatly reduced the time required for the determination of total nitrogen in Chinese loam soil, and recoveries of 100 ± 2% of the certified value of 640 mg kg–1 were obtained. Similar recoveries and reduced times to determination were also achieved for real soil samples.
Journal of Pharmaceutical and Biomedical Analysis | 2008
Simon D. Brandt; Claudia P.B. Martins; Sally Freeman; Nicola Dempster; Mark Wainwright; Philip Riby; John F. Alder
N,N-Dimethyltryptamine (DMT) 1 is a simple tryptamine derivative with powerful psychoactive properties. It is abundant in nature and easily accessible through a variety of synthetic routes. Most work-up procedures require the use of organic solvents and halogenated representatives are often employed. DMT was found to be reactive towards dichloromethane, either during work-up or long term storage therein, which led to the formation of the quaternary ammonium salt N-chloromethyl-DMT chloride 2. Analysis of this side-product by gas chromatography ion trap mass spectrometry (GC-MS), both in electron and chemical ionisation tandem MS modes, gave only degradation products. For example, 2 could not be detected but appeared to have rearranged to 3-(2-chloroethyl)indole 3 and 2-methyltetrahydro-beta-carboline 4, whereas HPLC analysis enabled the detection of 2. GC-MS is a standard tool for the fingerprinting of drug products. The identification of a particular synthetic route is based on the analysis of impurities, provided these side products can be established to be route-specific. The in situ detection of both 3 and 4 within a DMT sample may have led to erroneous conclusions with regards to the identification of the synthetic route.
Forensic Science International | 2008
Simon D. Brandt; Claudia P.B. Martins; Sally Freeman; Nicola Dempster; Philip Riby; Jochen Gartz; John F. Alder
The psychoactive properties of N,N-dimethyltryptamine (DMT) 1a are known to induce altered states of consciousness in humans. This particular attribute attracts great interest from a variety of scientific and also clandestine communities. Our recent research has confirmed that DMT reacts with dichloromethane (DCM), either as a result of work-up or storage to give a quaternary N-chloromethyl ammonium salt 2a. Furthermore, this was observed to undergo rearrangement during analysis using gas chromatography-mass spectrometry (GC-MS) with products including 3-(2-chloroethyl)indole 3 and 2-methyltetrahydro-beta-carboline 4 (2-Me-THBC). This study further investigates this so far unexplored area of solvent interactions by the exposure of DMT to other halogenated solvents including dibromomethane and 1,2-dichloroethane (DCE). The N-bromomethyl- and N-chloroethyl quaternary ammonium derivatives were subsequently characterised by ion trap GC-MS in electron and chemical ionisation tandem MS mode and by NMR spectroscopy. The DCE-derived derivative formed at least six rearrangement products in the total ion chromatogram. Identification of mass spectrometry generated by-products was verified by conventional or microwave-accelerated synthesis. The use of deuterated DCM and deuterated DMT 1b provided insights into the mechanism of the rearrangements. The presence of potentially characteristic marker molecules may allow the identification of solvents used during the manufacture of controlled substances, which is often neglected since these are considered inert.
Ecological Engineering | 2012
William Hartley; Nicholas M. Dickinson; Philip Riby; R. Brian E. Shutes