Philip S. Bridger
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip S. Bridger.
Veterinary Research Communications | 2012
Christine Reich; Oksana Raabe; Sabine Wenisch; Philip S. Bridger; Martin Kramer; Stefan Arnhold
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.
Veterinary Immunology and Immunopathology | 2011
Philip S. Bridger; Rolf Bauerfeind; Lisa Wenzel; Natali Bauer; Christian Menge; Heinz-Jürgen Thiel; Manfred Reinacher; Klaus Doll
Bovine neonatal pancytopenia (BNP) is an emerging calf disease of unknown cause characterized by a pronounced susceptibility to bleeding as a result of a pancytopenia and bone marrow depletion. In this study we investigated whether this phenomenon is related to colostrum-derived alloantibodies directed against neonatal leukocytes. In a first experiment and using a flow cytometric approach sera from 6 BNP-dams (had given birth to BNP-calves; vaccinated against bovine viral diarrhea virus [BVDV]) and 6 control-dams (no herd history of BNP; no BVDV vaccination) were analyzed for the presences of alloantibodies (IgG) able to bind to the surface of leukocytes isolated from 7 calves from a herd with no history of BNP (no BVDV vaccination). In a second experiment, 4 neonates from 3 BNP-dams were fed colostrum from their corresponding mothers and sampled on a regular basis from birth up to day 21 of life under clinically controlled conditions. Sample analysis of the 4 neonates included hematology (white blood cell count and platelets), bone marrow cytology and histopathology as well as the flow cytometric detection of the percentage of IgG+-lymphocytes/monocytes in the peripheral blood. Experiment #1 showed that all BNP-dam sera harbored significantly higher alloantibody titers than the control dam sera (p<0.001). In the peripheral blood of the two neonates (Experiment #2), the percentage of IgG+-cells increased dramatically within 12h post colostrum intake (p.c.i.), remaining at over 95% for up to 3 days. Both calves developed BNP-associated clinical symptoms, one died. Both twin calves showed no clinical symptoms accompanied by a minor increase of IgG+ cells for up to 12h. Thus, the level of IgG+-cells and the duration of the detection thereof correlated with the severity of BNP developed by these animals. The results show that BNP-dams harbor alloantibodies against surface antigens of neonatal leukocytes in their sera that are readily transferred to the offspring via colostrum. These alloantibodies probably play a crucial role in the pathogenesis of BNP.
Infection and Immunity | 2008
Ivonne Stamm; Melanie Mohr; Philip S. Bridger; Elmar Schröpfer; Matthias König; William C. Stoffregen; Evelyn A. Dean-Nystrom; Georg Baljer; Christian Menge
ABSTRACT Bovine colonic crypt cells express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization of cattle by human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used flow cytometric and real-time PCR analyses of primary cultures of colonic crypt cells to evaluate cell viability, CD77 expression, and gene transcription in the presence and absence of purified Stx1. A subset of cultured epithelial cells had Stx receptors which were located mainly intracellularly, with a perinuclear distribution, and were resistant to Stx1-induced apoptosis and Stx1 effects on chemokine expression patterns. In contrast, a population of vimentin-positive cells, i.e., mesenchymal/nonepithelial cells that had high numbers of Stx receptors on their surface, was depleted from the cultures by Stx1. In situ, CD77+ cells were located in the lamina propria of the bovine colon by using immunofluorescence staining. A newly established vimentin-positive crypt cell line with high CD77 expression resisted the cytolethal effect of Stx1 but responded to Stx1 with a significant increase in interleukin-8 (IL-8), GRO-α, MCP-1, and RANTES mRNA. Combined stimulation with lipopolysaccharide and Stx1 increased IL-10 mRNA. Our results show that bovine colonic crypt cells of epithelial origin are resistant to both the cytotoxic and modulatory effects of Stx1. In contrast, some mucosal mesenchymal cells, preliminarily characterized as mucosal macrophages, are Stx1-responsive cells that may participate in the interaction of STEC with the bovine intestinal mucosa.
Veterinary Immunology and Immunopathology | 2010
Philip S. Bridger; Melanie Mohr; Ivonne Stamm; Julia Fröhlich; Wolfram Föllmann; Sascha Birkner; Hannah Metcalfe; Dirk Werling; Georg Baljer; Christian Menge
The parasitic or commensal lifestyle of bacteria in different hosts depends on specific molecular interactions with the respective host species. In vitro models to study intestinal bacteria-host interactions in cattle are not available. Bovine primary colonocyte (PC) cultures were generated from colon crypt explants. Up to day 4 of culture, the vast majority of cells were of epithelial phenotype (i.e., expressed cytokeratin but not vimentin). PCs harboured mRNA specific for Toll-like receptors (TLR) 1, TLR3, TLR4 and TLR6 but not for TLR2, TLR5, TLR7, TLR8, TLR9 and TLR10. Six hours after inoculation of PC cultures with Escherichia coli (E. coli) prototype strains representing different pathovars (enterohaemorrhagic E. coli [EHEC], enteropathogenic E. coli [EPEC], enterotoxic E. coli [ETEC]), bacteria were found attached to the cells. EPEC adhesion was accompanied by intracellular actin accumulation. An attenuated laboratory strain (E. coli K12 C600) and a bovine commensal E. coli strain (P391) both did not adhere. Bacterial or LPS challenge of PC cultures resulted in specific increases in mRNA transcripts for IL-8, GRO-alpha, MCP-1, RANTES, and IL-10. The level of mRNA transcripts for TGF-beta stayed constant, while IL-12 mRNA was not detectable. Short-term cultures of PCs, maintaining epithelial cell properties, interacted with commensal and pathogenic bacteria in a strain-specific manner and have proven to be a useful in vitro model to study the interaction of bacteria with the bovine intestinal mucosa.
Placenta | 2007
Philip S. Bridger; Christian Menge; Rudolf Leiser; Hans-Rudolf Tinneberg; Christiane Pfarrer
Abstract In the bovine synepitheliochorial placenta key sites of fetal–maternal interaction are placentomes consisting of maternal caruncles interdigitating with fetal cotyledons. The aim of this study was to establish an epithelial cell line from caruncles of pregnant cows and to develop a model to study restricted trophoblast invasion, pathogenesis of pregnancy associated diseases and pathways of infection and transport. Primary epithelial cells were isolated, successfully subcultured for 32 passages and cryopreserved at various stages. The cultures were termed bovine caruncular epithelial cell line-1 (BCEC-1). Cytokeratin, zonula occludens-1 protein and vimentin but neither α-smooth muscle actin nor desmin were detected by immunofluorescence performed every 5 (±1) passages. These results were confirmed by Western blotting. BCEC-1 were then cultured either without matrix or on fibronectin or collagen coated Transwell® polyester membrane inserts, respectively, enabling separate access to the basal or apical epithelial compartments. Transmission and scanning electron microscopy of BCEC-1 revealed ultrastructural features also observed in vivo, such as apical microvilli and junctional complexes. Transepithelial electrical resistance (TEER) was measured regularly and revealed an increase with advancing confluence in all cultures. Cultures on coated inserts reached confluence and corresponding TEER-levels at an earlier stage. In addition, the cells were tested negative for bovine virus diarrhoea (BVD) virus, but were permissive for the virus. In conclusion, the BCEC-1 cell line retained characteristics of maternal caruncular epithelial cells as observed in vivo and in primary cell cultures and thus will be a highly useful tool for future studies of pathways of invasion, fetal–maternal communication, transport and infection.
Biology of Reproduction | 2008
Philip S. Bridger; Susanne Haupt; Rudolf Leiser; Gregory A. Johnson; Robert C. Burghardt; Hans-Rudolf Tinneberg; C. Pfarrer
Abstract In the bovine synepitheliochorial placenta, restricted trophoblast invasion requires complex interactions of integrin receptors with proteins of the extracellular matrix (ECM) and integrin receptors of neighboring cells. Activated integrins assemble to focal adhesions and are linked to the actin cytoskeleton via signaling molecules including alpha-actinin (ACTN), focal adhesion kinase (PTK2 or FAK), phosphotyrosine, and talin (TLN1). Aims of this study were to assess integrin activation and focal adhesion assembly within epithelial cells of bovine placentomes and low-passage (not transformed) placentomal caruncular epithelial cells cultured on dishes coated with ECM proteins. Immunofluorescence analysis was performed to colocalize the signaling molecules ACTN, PTK2, phosphotyrosine, and TLN1 with each other and with beta1-integrin (ITGB1) in placentomal cryosections throughout pregnancy and in caruncular epithelial cells in vitro. Antibody specificity was confirmed by Western blot. Cells were cultured on uncoated dishes, and the dishes were coated with fibronectin (FN), laminin (LAMA), and collagen type IV (COL4), thereby statistically assessing cell number and qualitatively assessing the expression pattern of ITGB1, phosphotyrosine, and TLN1. Results demonstrated integrin activation and focal adhesion assembly in the placentome and that low-passage caruncular epithelial cells maintain integrin-associated properties observed in vivo. Expression and/or colocalization of signaling molecules with ITGB1 confirmed, for the first time, integrin activation and participation in “outside-in” and “inside-out” signaling pathways. The prominent role of ECM, and FN in particular, in integrin signaling is supported by the in vitro enhancement of proliferation and focal adhesion expression. Thus, this in vitro model provides excellent potential for further mechanistic studies designed to elucidate feto-maternal interactions in the bovine placentome.
Veterinary Research | 2015
Katharina Kerner; Philip S. Bridger; Gabriele Köpf; Julia Fröhlich; Stefanie Barth; Hermann Willems; Rolf Bauerfeind; Georg Baljer; Christian Menge
Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress the immune system thereby promoting long-term STEC shedding. First infections of animals at calves’ age coincide with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were to generate recombinant Shiga toxoids (rStx1mut & rStx2mut) by site-directed mutagenesis and to assess their immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1WT) and rStx2WT significantly induced transcription of IL-4 mRNA. rStx1WT and rStx2WT reduced the expression of Stx-receptor CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived macrophages. At the same concentrations, rStx1mut and rStx2mut exhibited neither of these effects. Antibodies in sera of cattle naturally infected with STEC recognized the rStxmut toxoids equally well as the recombinant wild type toxins. Immunization of calves with rStx1mut plus rStx2mut led to induction of antibodies neutralizing Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to mitigate long-term STEC shedding by the reservoir host.
Innate Immunity | 2015
Christian Menge; Daniela Loos; Philip S. Bridger; Stefanie Barth; Dirk Werling; Georg Baljer
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections in cattle are asymptomatic; however, Stx impairs the initiation of an adaptive immune response by targeting bovine peripheral and intraepithelial lymphocytes. As presumptive bovine mucosal macrophages (Mø) are also sensitive to Stx, STEC may even exert immune modulatory effects by acting on steps preceding lymphocyte activation at the Mø level. We therefore studied the expression of the Stx receptor (CD77), cellular phenotype and functions after incubation of primary bovine monocyte-derived Mø with purified Stx1. A significant portion of bovine Mø expressed CD77 on their surface, with the recombinant B-subunit of Stx1 binding to >50% of the cells. Stx1 down-regulated significantly surface expression of CD14, CD172a and co-stimulatory molecules CD80 and CD86 within 4 h of incubation, while MHC-II expression remained unaffected. Furthermore, incubation of Mø with Stx1 increased significantly numbers of transcripts for IL-4, IL-6, IL-10, IFN-γ, TNF-α, IL-8 and GRO-α but not for IL-12, TGF-β, MCP-1 and RANTES. In the course of bovine STEC infections, Stx1 appears to induce in Mø a mixed response pattern reminiscent of regulatory Mø, which may amplify the direct suppressive effect of the toxin on lymphocytes.
Theriogenology | 2007
Philip S. Bridger; S. Haupt; Karl Klisch; Rudolf Leiser; Hans-Rudolf Tinneberg; Christiane Pfarrer
8. Stendaler Symposium : Diagnostik und Bekämpfung von Tierseuchen und anderen bedeutenden Infektionskrankheiten bei Rindern vom 9. bis 11. Mai 2012 in Stendal : Zusammenfassungen | 2012
S. Schillinger; Philip S. Bridger; T. Seeger; M. Fischer; Christian Menge; Rolf Bauerfeind