Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip S. L. Anderson is active.

Publication


Featured researches published by Philip S. L. Anderson.


Nature | 2011

Initial radiation of jaws demonstrated stability despite faunal and environmental change.

Philip S. L. Anderson; Matt Friedman; Martin D. Brazeau; Emily J. Rayfield

More than 99 per cent of the roughly 58,000 living vertebrate species have jaws. This major clade, whose members are collectively known as gnathostomes (‘jawed mouths’), made its earliest definitive appearance in the Silurian period, 444–416 million years (Myr) ago, with both the origin of the modern (crown-group) radiation and the presumptive invasion of land occurring by the end of the Devonian period (359 Myr ago). These events coincided with a major faunal shift that remains apparent today: the transition from Silurian ecosystems dominated by jawless fishes (agnathans) to younger assemblages composed almost exclusively of gnathostomes. This pattern has inspired several qualitative descriptions of the trophic radiation and ecological ascendance of the earliest jawed vertebrates. Here we present a quantitative analysis of functional variation in early gnathostome mandibular elements, placing constraints on our understanding of evolutionary patterns during this critical interval. We document an initial increase in functional disparity in the Silurian that stabilized by the first stage of the Devonian, before the occurrence of an Emsian (∼400 Myr ago) oxygenation event implicated in the trophic radiation of vertebrates. Subsequent taxonomic diversification during the Devonian did not result in increased functional variation; instead, new taxa revisited and elaborated on established mandibular designs. Devonian functional space is dominated by lobe-finned fishes and ‘placoderms’; high disparity within the latter implies considerable trophic innovation among jaw-bearing stem gnathostomes. By contrast, the major groups of living vertebrates—ray-finned fishes and tetrapods—show surprisingly conservative mandibular morphologies with little indication of functional diversification or innovation. Devonian gnathostomes reached a point where they ceased to accrue further mandibular functional disparity before becoming taxonomic dominants relative to ‘ostracoderm’-grade jawless fishes, providing a new perspective on classic adaptive hypotheses concerning this fundamental shift in vertebrate biodiversity.


Evolution & Development | 2007

First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs.

Matt Friedman; Michael I. Coates; Philip S. L. Anderson

SUMMARY The fossil record provides unique clues about the primitive pattern of lobed fins, the precursors of digit‐bearing limbs. Such information is vital for understanding the evolutionary transition from fish fins to tetrapod limbs, and it guides the choice of model systems for investigating the developmental changes underpinning this event. However, the evolutionary preconditions for tetrapod limbs remain unclear. This uncertainty arises from an outstanding gap in our knowledge of early lobed fins: there are no fossil data that record primitive pectoral fin conditions in coelacanths, one of the three major groups of sarcopterygian (lobe‐finned) fishes. A new fossil from the Middle–Late Devonian of Wyoming preserves the first and only example of a primitive coelacanth pectoral fin endoskeleton. The strongly asymmetrical skeleton of this fin corroborates the hypothesis that this is the primitive sarcopterygian pattern, and that this pattern persisted in the closest fish‐like relatives of land vertebrates. The new material reveals the specializations of paired fins in the modern coelacanth, as well as in living lungfishes. Consequently, the context in which these might be used to investigate evolutionary and developmental relationships between vertebrate fins and limbs is changed. Our data suggest that primitive actinopterygians, rather than living sarcopterygian fishes and their derived appendages, are the most informative comparators for developmental studies seeking to understand the origin of tetrapod limbs.


BMC Evolutionary Biology | 2014

Adaptive plasticity in the mouse mandible.

Philip S. L. Anderson; Sabrina Renaud; Emily J. Rayfield

BackgroundPlasticity, i.e. non-heritable morphological variation, enables organisms to modify the shape of their skeletal tissues in response to varying environmental stimuli. Plastic variation may also allow individuals to survive in the face of new environmental conditions, enabling the evolution of heritable adaptive traits. However, it is uncertain whether such a plastic response of morphology constitutes an evolutionary adaption itself. Here we investigate whether shape differences due to plastic bone remodelling have functionally advantageous biomechanical consequences in mouse mandibles. Shape characteristics of mandibles from two groups of inbred laboratory mice fed either rodent pellets or ground pellets mixed with jelly were assessed using geometric morphometrics and mechanical advantage measurements of jaw adductor musculature.ResultsMandibles raised on diets with differing food consistency showed significant differences in shape, which in turn altered their biomechanical profile. Mice raised on a soft food diet show a reduction in mechanical advantage relative to mice of the same inbred strain raised on a typical hard food diet. Further, the soft food eaters showed lower levels of integration between jaw regions, particularly between the molar and angular region relative to hard food eaters.ConclusionsBone remodelling in mouse mandibles allows for significant shifts in biomechanical ability. Food consistency significantly influences this process in an adaptive direction, as mice raised on hard food develop jaws better suited to handle hard foods. This remodelling also affects the organisation of the mandible, as mice raised on soft food appear to be released from developmental constraints showing less overall integration than those raised on hard foods, but with a shift of integration towards the most solicited regions of the mandible facing such a food, namely the incisors. Our results illustrate how environmentally driven plasticity can lead to adaptive functional changes that increase biomechanical efficiency of food processing in the face of an increased solicitation. In contrast, decreased demand in terms of food processing seems to release developmental interactions between jaw parts involved in mastication, and may generate new patterns of co-variation, possibly opening new directions to subsequent selection. Overall, our results emphasize that mandible shape and integration evolved as parts of a complex system including mechanical loading food resource utilization and possibly foraging behaviour.


Biology Letters | 2007

Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator

Philip S. L. Anderson; Mark W. Westneat

Placoderms are a diverse group of armoured fishes that dominated the aquatic ecosystems of the Devonian Period, 415–360 million years ago. The bladed jaws of predators such as Dunkleosteus suggest that these animals were the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey items prior to ingestion. Here, we develop a biomechanical model of force and motion during feeding in Dunkleosteus terrelli that reveals a highly kinetic skull driven by a unique four-bar linkage mechanism. The linkage system has a high-speed transmission for jaw opening, producing a rapid expansion phase similar to modern fishes that use suction during prey capture. Jaw closing muscles power an extraordinarily strong bite, with an estimated maximal bite force of over 4400 N at the jaw tip and more than 5300 N at the rear dental plates, for a large individual (6 m in total length). This bite force capability is the greatest of all living or fossil fishes and is among the most powerful bites in animals.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction.

Thomas L. Stubbs; Stephanie E. Pierce; Emily J. Rayfield; Philip S. L. Anderson

Mesozoic crurotarsans exhibited diverse morphologies and feeding modes, representing considerable ecological diversity, yet macroevolutionary patterns remain unexplored. Here, we use a unique combination of morphological and biomechanical disparity metrics to quantify the ecological diversity and trophic radiations of Mesozoic crurotarsans, using the mandible as a morpho-functional proxy. We recover three major trends. First, the diverse assemblage of Late Triassic crurotarsans was morphologically and biomechanically disparate, implying high levels of ecological variation; but, following the end-Triassic extinction, disparity declined. Second, the Jurassic radiation of marine thalattosuchians resulted in very low morphological disparity but moderate variation in jaw biomechanics, highlighting a hydrodynamic constraint on mandibular form. Third, during the Cretaceous terrestrial radiations of neosuchians and notosuchians, mandibular morphological variation increased considerably. By the Late Cretaceous, crocodylomorphs evolved a range of morphologies equalling Late Triassic crurotarsans. By contrast, biomechanical disparity in the Cretaceous did not increase, essentially decoupling from morphology. This enigmatic result could be attributed to biomechanical evolution in other anatomical regions (e.g. cranium, dentition or postcranium), possibly releasing the mandible from selective pressures. Overall, our analyses reveal a complex relationship between morphological and biomechanical disparity in Mesozoic crurotarsans that culminated in specialized feeding ecologies and associated lifestyles.


Paleobiology | 2009

Biomechanics, functional patterns, and disparity in Late Devonian arthrodires

Philip S. L. Anderson

Abstract Studies of ecological structure and diversity over time in extinct groups have always been challenged by the inability to observe the behavior of fossil taxa directly. The only available evidence for function, behavior, and interactions between taxa is the morphological characteristics of the preserved fossils. Recent studies on modern groups have shown that morphological analyses may give misleading results in terms of ecological pattern and diversity. An alternative approach is to focus on functionally relevant aspects of morphology through a paleobiomechanical paradigm. The purpose of this research is to examine variation in the lower jaw morphology in Late Devonian arthrodire placoderms and develop biomechanical metrics that can be used to quantify functional diversity among this fossil group. Nine functionally relevant morphological characters were collected for 94 isolated arthrodire inferognathals from the Gogo Formation in Western Australia and the Cleveland Shale in Ohio. These data were used to address aspects of functional morphology, biomechanical disparity, and ecological structure in arthrodire placoderms from the Late Devonian. Results were compared with results from previous morphometric work on the same set of jaws. Statistical tests show a significant difference in functional characters between the two faunas. The differences may be related to phylogenetic differences between faunas, as the two major clades of arthrodire taxa included in this study are almost completely segregated between faunas. Average pairwise disparity analyses of the mechanical characters indicate that there is no significant difference in overall functional diversity between the Cleveland Shale and Gogo Reef arthrodire faunas. This result is at odds with previous results that show overall morphological disparity to be much higher in the Cleveland Shale. Clustering patterns within a multivariate function-space show tightly constrained functional groups of taxa independent of phylogenetic or shape-based morphological similarity. These functional groups illustrate a level of ecological diversity in Late Devonian arthrodires that is comparable to that in certain modern faunas. Further statistical analysis of the morphological and functional disparity of these Late Devonian taxa shows a disjoint between the two measures. Model I regression analysis of and Spearman rank-correlation analysis of average pairwise morphological and functional disparity measures indicate no significant relationship between morphological and functional disparity among the jaws used in this study. Although function is obviously derived from morphology, these results show that morphological shape analysis is not necessarily a good proxy for eco-functional diversity.


The Journal of Experimental Biology | 2009

The effects of trapping and blade angle of notched dentitions on fracture of biological tissues

Philip S. L. Anderson

SUMMARY The material properties of food can exert a significant influence on tooth morphology. Although the stiffness or toughness of a material is usually of prime concern, other aspects of material properties (such as extensibility) can be of equal importance. Previous experimental work on the effect blade shape has on fracturing biological materials indicated a notched blade greatly reduced the work required to cut tough tissue. As a notched blade both traps materials and cuts at an angle, it is not clear which of these features leads to increased cutting efficiency. This paper tests whether the ability to cut at an angle or trap the material has the greater effect on the work to fracture required to cut tough tissues with different levels of extensibility (asparagus and fish muscle). Results show that the work to fracture required to cut more extensible materials is reduced by up to 50% when a trapping mechanism alone is used in comparison with an angled blade alone. For less extensible materials, the trapping ability of a notch seems to have no effect, whereas the angled blade reduces work to fracture by up to 25% relative to a straight blade. The aspects of blade shape most important to the breaking down of foods depend upon the relative stiffness or toughness, as well as other material properties.


Journal of Morphology | 2011

Modeling the effects of cingula structure on strain patterns and potential fracture in tooth enamel

Philip S. L. Anderson; Pamela G. Gill; Emily J. Rayfield

The mammalian cingulum is a shelf of enamel, which rings the base of the molar crown (fully or partially). Certain nonmammalian cynodonts show precursors of this structure, indicating that it may be an important dental character in the origins of mammals. However, there is little consensus as to what drove the initial evolution of the cingulum. Recent work on physical modeling of fracture mechanics has shown that structures which approximate mammalian dentition (hard enamel shell surrounding a softer/tougher dentine interior) undergo specific fracture patterns dependent on the material properties of the food items. Soft materials result in fractures occurring at the base of the stiff shell away from the contact point due to heightened tensile strains. These tensile strains occur around the margin in the region where cingula develop. In this article, we test whether the presence of a cingulum structure will reduce the tensile strains seen in enamel using basic finite element models of bilayered cones. Finite element models of generic cone shaped “teeth” were created both with and without cingula of various shapes and sizes. Various forces were applied to the models to examine the relative magnitudes and directions of average maximum principal strain in the enamel. The addition of a cingulum greatly reduces tensile strains in the enamel caused by “soft‐food” forces. The relative shape and size of the cingulum has a strong effect on strain magnitudes as well. Scaling issues between shapes are explored and show that the effectiveness of a given cingulum to reducing tensile strains is dependent on how the cingulum is created. Partial cingula, which only surround a portion of the tooth, are shown to be especially effective at reducing strain caused by asymmetrical loads, and shed new light on the potential early function and evolution of mammalian dentitions. J. Morphol., 2011.


Biology Letters | 2012

Models in palaeontological functional analysis

Philip S. L. Anderson; Jen A. Bright; Pamela G. Gill; Colin Palmer; Emily J. Rayfield

Models are a principal tool of modern science. By definition, and in practice, models are not literal representations of reality but provide simplifications or substitutes of the events, scenarios or behaviours that are being studied or predicted. All models make assumptions, and palaeontological models in particular require additional assumptions to study unobservable events in deep time. In the case of functional analysis, the degree of missing data associated with reconstructing musculoskeletal anatomy and neuronal control in extinct organisms has, in the eyes of some scientists, rendered detailed functional analysis of fossils intractable. Such a prognosis may indeed be realized if palaeontologists attempt to recreate elaborate biomechanical models based on missing data and loosely justified assumptions. Yet multiple enabling methodologies and techniques now exist: tools for bracketing boundaries of reality; more rigorous consideration of soft tissues and missing data and methods drawing on physical principles that all organisms must adhere to. As with many aspects of science, the utility of such biomechanical models depends on the questions they seek to address, and the accuracy and validity of the models themselves.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Mechanical sensitivity reveals evolutionary dynamics of mechanical systems

Philip S. L. Anderson; S. N. Patek

A classic question in evolutionary biology is how form–function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity—the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form–function systems.

Collaboration


Dive into the Philip S. L. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheryl D. Wilga

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge