Philip V. Toukach
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip V. Toukach.
BMC Structural Biology | 2008
Stephan Herget; Philip V. Toukach; René Ranzinger; William E. Hull; Yuriy A. Knirel; Claus-Wilhelm von der Lieth
BackgroundThere are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.ResultsThe sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties.ConclusionFor the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.
Carbohydrate Polymers | 2014
Evgeny G. Shakhmatov; Philip V. Toukach; Еlena А. Michailowa; Elena N. Makarova
Highly branched arabinan-rich pectic polysaccharides, containing 84% of arabinose, was extracted from wood greenery of Abies sibirica L. The structure of arabinan was studied by the 1D and 2D NMR spectroscopy. The macromolecule backbone was represented mainly by RG-I (molar ratio GalA:Rha ∼ 1.3:1) patterns with high degree of rhamnose branching. Side chains were comprised of 1,5-linked α-L-Araf residues (the major part of polymer mass), 1,3,5-di-O- and 1,2,3,5-tri-O-linked α-L-Araf residues, confirming the presence of highly branched 1,5-α-L-arabinan. Although most L-Araf were in α-anomeric form, minor terminal β-L-Araf-(1 →... was detected. 1,4-β-D-linked Galp residues found in the side chains account for minor AG-I or 1,4-galactan, as compared to arabinan. A tentative structure was proposed. Polysaccharides obtained from Siberian fir greenery were screened for biological activity. Galacturonan had a strongest stimulating effect on germination and growth rate of seeds, germs and roots of Triticum aestivum, Avena sativa, and Secale cereale.
Nucleic Acids Research | 2016
Philip V. Toukach; Ksenia S. Egorova
The Carbohydrate Structure Databases (CSDBs, http://csdb.glycoscience.ru) store structural, bibliographic, taxonomic, NMR spectroscopic, and other data on natural carbohydrates and their derivatives published in the scientific literature. The CSDB project was launched in 2005 for bacterial saccharides (as BCSDB). Currently, it includes two parts, the Bacterial CSDB and the Plant&Fungal CSDB. In March 2015, these databases were merged to the single CSDB. The combined CSDB includes information on bacterial and archaeal glycans and derivatives (the coverage is close to complete), as well as on plant and fungal glycans and glycoconjugates (almost all structures published up to 1998). CSDB is regularly updated via manual expert annotation of original publications. Both newly annotated data and data imported from other databases are manually curated. The CSDB data are exportable in a number of modern formats, such as GlycoRDF. CSDB provides additional services for simulation of 1H, 13C and 2D NMR spectra of saccharides, NMR-based structure prediction, glycan-based taxon clustering and other.
Carbohydrate Polymers | 2014
Evgeny G. Shakhmatov; Philip V. Toukach; Sergey P. Kuznetsov; Elena N. Makarova
Fractions containing arabinogalactan proteins (AGPs) and pectic polysaccharides were isolated from above-ground parts of Heracleum sosnowskyi. Major units of their structure were elucidated using ion-exchange chromatography, gel chromatography, and NMR spectroscopy. The carbohydrate backbone of the polysaccharides consisted of 1,3-β-D-galactopyranosyl residues, whereas side chains of the branched region consisted of the residues of 1,6-β-galactopyranose, 1,5-α-L-arabinofuranose, 1,4-β-D-glucuronic acid, and 1,6-β-D-glucopyranose. The branching points were identified as 1,3,6-β-D-galactopyranose residues. Side chains were terminated with β-D-galactopyranose, α-L-arabinofuranose and α-L-rhamnopyranose. A significant part of the side-chain β-1,6-galactan was substituted at C6 by 4-OMe-β-D-glucuronic acid. A minor part of glucuronic acid was included in the α-Rhap-(1 → 4)-β-GlcA-(→ fragment. All the studied fractions contained 1,4-β-D-galacturonic acid as well.
Carbohydrate Research | 2014
K.S. Egorova; Philip V. Toukach
The Bacterial Carbohydrate Structure Database (BCSDB), which has been maintained since 2005, was expanded to cover glycans from plants and fungi. The current coverage on plant and fungal glycans includes several thousands of the CarbBank records, as well as data published before 1996 but not deposited in CarbBank. Prior to deposition, the data were verified against the original publications and supplemented with additional information, such as NMR spectra. Both the Bacterial and Plant and Fungal Carbohydrate Structure Databases are freely available at http://csdb.glycoscience.ru.
Carbohydrate Research | 2002
Dominika Drzewiecka; Philip V. Toukach; Nikolay P. Arbatsky; Krystyna Zych; Alexander S. Shashkov; Yuriy A. Knirel; Zygmunt Sidorczyk
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.
Journal of Chemical Information and Modeling | 2012
Ksenia S. Egorova; Philip V. Toukach
Systematization and classification of carbohydrates contribute greatly to development of modern biomedical sciences. CCSD (CarbBank) data constitute the significant part of nearly all existing carbohydrate databases. However, these data have not been verified from their original deposit. During the expansion of Bacterial Carbohydrate Structure Database (BCSDB) project, we checked CCSD data quality and found that about 35% of records contained errors. The CCSD data cannot be used without manual verification, while CCSD errors migrate from database to database.
Carbohydrate Research | 2009
Ewa Katzenellenbogen; Nina A. Kocharova; Philip V. Toukach; Sabina Górska; Agnieszka Korzeniowska-Kowal; Maria Bogulska; Andrzej Gamian; Yuriy A. Knirel
The lipopolysaccharide of Citrobacter freundii O22 (strain PCM 1555) was degraded under mild acidic conditions and the O-polysaccharide released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H ROESY and (1)H,(13)C HMBC experiments, showed that the repeating unit of the O-polysaccharide has the following structure: alpha-Abep 1 -->3 --> 2)-alpha-D-Manp-(1-->4)-alpha-L-Rhap-(1-->3)-alpha-D-Galp-(1--> where Abe is abequose (3,6-dideoxy-D-xylo-hexose). SDS-PAGE and immunoblotting revealed that the O-antigen of C. freundii O22 is serologically indistinguishable from those of Salmonella group B serovars (Typhimurium, Brandenburg, Sandiego, Paratyphi B) but not related to other abequose-containing O-antigens tested (Citrobacter werkmanii O38 and Salmonella Kentucky) or colitose (l enantiomer of abequose)-containing O-antigen of Escherichia coli O111.
Journal of Chemical Information and Modeling | 2014
Roman R. Kapaev; Ksenia S. Egorova; Philip V. Toukach
Carbohydrates play an immense role in different aspects of life. NMR spectroscopy is the most powerful tool for investigation of these compounds. Nowadays, progress in computational procedures has opened up novel opportunities giving an impulse to the development of new instruments intended to make the research simpler and more efficient. In this paper, we present a new approach for simulating (13)C NMR chemical shifts of carbohydrates. The approach is suitable for any atomic observables, which could be stored in a database. The method is based on sequential generalization of the chemical surroundings of the atom under prediction and heuristic averaging of database data. Unlike existing applications, the generalization scheme is tuned for carbohydrates, including those containing phosphates, amino acids, alditols, and other non-carbohydrate constituents. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) software, which is freely available on the Internet. In the field of carbohydrates, our approach was shown to outperform all other existing methods of NMR spectrum prediction (including quantum-mechanical calculations) in accuracy. Only this approach supports NMR spectrum simulation for a number of structural features in polymeric structures.
Fems Immunology and Medical Microbiology | 2008
Ewa Katzenellenbogen; Philip V. Toukach; Nina A. Kocharova; Agnieszka Korzeniowska-Kowal; Andrzej Gamian; Alexander S. Shashkov; Yuriy A. Knirel
Lipopolysaccharide was extracted from cells of Citrobacter freundii PCM 1443 from serogroup O39 and degraded by mild acid hydrolysis to give an O-polysaccharide. Based on enzymatic and methylation analyses, along with 1H and 13C nuclear magnetic resonance spectroscopy, it was found that the lipopolysaccharide studied has two different linear polysaccharide chains of d-galactan type containing 3-substituted galactose residues. One of the galactans has the disaccharide repeating units of alpha-D-galactopyranose and beta-D-galactofuranose and the other is comprised of alpha-D-galactopyranose and beta-D-galactopyranose, the latter being substituted in 25% repeats with PEtN at O-6. An immunoblotting assay demonstrated that the lipopolysaccharide of C. freundii PCM 1443 is serologically related to that of Klebsiella pneumoniae O1, which contains the same galactan chains but is devoid of phosphoethanolamine.