Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Welsh is active.

Publication


Featured researches published by Philip Welsh.


Journal of Gene Medicine | 2004

An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects

Marie Boyd; Robert J. Mairs; W. Nicol Keith; Susan C. Ross; Philip Welsh; Gamal Akabani; Jonathan Owens; Ganesan Vaidyanathan; Ross Carruthers; Jennifer Dorrens; Michael R. Zalutsky

Targeted radiotherapy achieves malignant cell‐specific concentration of radiation dosage by tumour‐affinic molecules conjugated to radioactive atoms. Combining gene therapy with targeted radiotherapy is attractive because the associated cross‐fire irradiation of the latter induces biological bystander effects upon neighbouring cells overcoming low gene transfer efficiency.


Bioconjugate Chemistry | 1996

Enhanced binding and inertness to dehalogenation of alpha-melanotropic peptides labeled using N-succinimidyl 3-iodobenzoate.

Pradeep K. Garg; Kevin L. Alston; Philip Welsh; Michael R. Zalutsky

Two peptides of potential utility for targeting melanoma cells, alpha-melanocyte-stimulating hormone (alpha-MSH) and its more potent analogue [Nle4,D-Phe7]-alpha-MSH, were radioiodinated in 45-65% yield using N-succinimidyl 3-[125I]iodobenzoate (SIB). To determine whether this labeling method resulted in improved in vitro and in vivo characteristics, these peptides also were labeled with 131I by direct iodination with the iodogen method. For alpha-MSH, the rapid tissue clearance of both radionuclides in mice was consistent with rapid degradation of the peptide; however, significantly lower levels of 125I were observed in thyroid and stomach, reflecting a greater inertness to deiodination. More extensive comparisons were performed with [Nle4,D-Phe7]-alpha-MSH. The in vitro binding of [Nle4,D-Phe7,Lys11-(125I)IBA]-alpha-MSH (prepared using SIB) to the murine B-16 melanoma cell line, 34.1 +/- 4.7%, was more than twice as high as that for [Tyr2(131I),Nle4,D-Phe7]-alpha-MSH (15.0 +/- 0.1%), and its KD was more than 10-fold lower than that for conventionally labeled peptide (10 +/- 5 versus 140 +/- 14 pM). The normal tissue clearance of [Nle4,D-Phe7,Lys11-(125I)IBA]-alpha-MSH in mice was faster than that of [Tyr2(131I),-Nle4,D-Phe7]-alpha-MSH. The 19-40-fold lower activity concentrations of [Nle4,D-Phe7,Lys11-(125I)IBA]-alpha-MSH in tissues accumulating free iodide (thyroid and stomach) suggest a greater inertness of this peptide to deiodination. The primary urinary catabolite of [Nle4,D-Phe7, Lys11-(125I)IBA]-alpha-MSH was the lysine conjugate of iodobenzoic acid, whereas radioiodide was the chief catabolite generated from [Tyr2(131I),Nle4,D-Phe7]-alpha-MSH. We conclude that further evaluation of [Nle4,D-Phe7,Lys11-(125I)IBA]-alpha-MSH for targeting alpha-MSH receptors is warranted and that SIB may be a useful method for the radioiodination of peptides.


Nuclear Medicine and Biology | 2000

Radioiodination and astatination of octreotide by conjugation labeling.

Ganesan Vaidyanathan; Donna J. Affleck; Philip Welsh; Ananth Srinivasan; Michelle A. Schmidt; Michael R. Zalutsky

Octreotide was coupled to 3-iodobenzoyl and 3-iodonicotinoyl moieties to obtain [N-(3-iodobenzoyl)-D-Phe(1)]octreotide (IBO) and [N-(3-iodonicotinoyl)-D-Phe(1)]octreotide (INO), respectively. The IC(50) values for the binding of IBO and INO to CA20948 rat pancreatic tumor membranes were 0.90 and 0.13 nM, respectively, compared with 0.35 nM for octreotide itself. Starting from N-succinimidyl 3-[(131)I]iodobenzoate and N-succinimidyl 5-[(131)I]iodopyridine-3- carboxylate, [(131)I]IBO and [(131)I]INO were prepared in overall radiochemical yields of 35%-50%. Likewise, ¿N-(3-[(211)At]astatobenzoyl)-D-Phe(1)¿octreotide ([(211)At]ABO) was prepared in similar yield from N-succinimidyl 3-[(211)At]astatobenzoate. In vitro assays with AR42J rat pancreatic tumor cells demonstrated a higher retention of cell-internalized radioiodine activity for [(131)I]INO compared with [(125)I]IBO. Tissue distribution studies with both conjugates revealed low levels of activity in the thyroid suggesting that dehalogenation of these peptides was minimal.


Nuclear Medicine and Biology | 2001

Positively charged templates for labeling internalizing antibodies: comparison of N-succinimidyl 5-iodo-3-pyridinecarboxylate and the D-amino acid peptide KRYRR

Catherine F. Foulon; Philip Welsh; Darell D. Bigner; Michael R. Zalutsky

Receptor-mediated internalization of monoclonal antibodies (mAbs), such as those specific for the epidermal growth factor receptor variant III (EGFRvIII), can lead to rapid loss of radioactivity from the target cell. In the current study, the anti-EGFRvIII mAb L8A4 was radioiodinated using two methods -N-succinimidyl 5-iodo-3-pyridinecarboxylate (SIPC) and via a D-amino acid peptide LysArgTyrArgArg (D-KRYRR). Paired-label internalization assays performed on EGFRvIII-expressing U87DeltaEGFR cells in vitro demonstrated that labeling L8A4 using D-KRYRR resulted in significantly higher retention of radioiodine in the intracellular compartment. In athymic mice with D256 human glioma xenografts, tumor uptake was similar for both labeling methods through 24 hr. However, an up to fourfold higher tumor retention was observed for mAb labeled with the D-amino acid peptide at later time points. Radiation absorbed dose calculations based on these biodistribution data indicated that L8A4 labeled using D-KRYRR exhibited better tumor-to-normal-organ radiation dose ratios, suggesting that this labeling method may be of particular value for labeling internalizing mAbs.


British Journal of Cancer | 1998

Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

Marlene L. Hauck; Roy H. Larsen; Philip Welsh; Michael R. Zalutsky

The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids.


Bioorganic & Medicinal Chemistry | 2012

SIB-DOTA: a trifunctional prosthetic group potentially amenable for multi-modal labeling that enhances tumor uptake of internalizing monoclonal antibodies.

Ganesan Vaidyanathan; Benjamin White; Donna J. Affleck; Xiao-Guang Zhao; Philip Welsh; Darryl McDougald; Jaeyeon Choi; Michael R. Zalutsky

A major drawback of internalizing monoclonal antibodies (mAbs) radioiodinated with direct electrophilic approaches is that tumor retention of radioactivity is compromised by the rapid washout of iodo-tyrosine, the primary labeled catabolite for mAbs labeled via this strategy. In our continuing efforts to develop more versatile residualizing labels that could overcome this problem, we have designed SIB-DOTA, a prosthetic labeling template that combines the features of the prototypical, dehalogenation-resistant N-succinimidyl 3-iodobenzoate (SIB) with DOTA, a useful macrocyclic chelator for labeling with radiometals. Herein we describe the synthesis of the unlabeled standard of this prosthetic moiety, its protected tin precursor, and radioiodinated SIB-DOTA. An anti-EGFRvIII-reactive mAb, L8A4 was radiolabeled with [(131)I]SIB-DOTA in 27.1±6.2% (n=2) conjugation yields and its targeting properties to the same mAb labeled with [(125)I]SGMIB both in vitro and in vivo using U87MG·ΔEGFR cells and xenografts were compared. In vitro paired-label internalization assays showed that the intracellular radioactivity from [(131)I]SIB-DOTA-L8A4 was 21.4±0.5% and 26.2±1.1% of initially bound radioactivity at 16 and 24h, respectively. In comparison, these values for [(125)I]SGMIB-L8A4 were 16.7±0.5% and 14.9±1.1%. Similarly, the SIB-DOTA prosthetic group provided better tumor targeting in vivo than SGMIB over 8 d period. These results suggest that SIB-DOTA warrants further evaluation as a residualizing agent for labeling internalizing mAbs including those targeted to EGFRvIII.


Nuclear Medicine Communications | 2004

Catabolism of 4-fluoro-3-iodobenzylguanidine and meta-iodobenzylguanidine by SK-N-SH neuroblastoma cells.

Ganesan Vaidyanathan; Donna J. Affleck; Kevin L. Alston; Philip Welsh; Michael R. Zalutsky

BackgroundA fluorine substituted derivative of meta-iodobenzylguanidine (MIBG), 4-fluoro-3-iodobenzylguanidine (FIBG), is retained in SK-N-SH human neuroblastoma cells in vitro to a higher degree than the MIBG. MethodTo investigate whether the higher retention of FIBG is due to differences in the catabolic degradation of the two tracers, in vitro paired-label studies were performed using SK-N-SH cells. ResultsNo detectable amount of benzyl amines, benzoic acids or hippuran derivatives, potential catabolites of these tracers, were seen in either case. Even after 48 h, the cell culture supernatants contained exclusively intact 125I-MIBG and 125I-FIBG. In contrast, in some cases, HPLC analysis of cell lysates indicated the presence of a very polar compound(s) as the predominant species with smaller quantities of intact tracers. The per cent total radioactivity in the lysate at each time point that was associated with intact 125I-FIBG was (average [range]) 25.4% [20.3–30.5], 22.5% [19.3–25.6], and 18.8% [14.3–23.3], at 0 h, 24 h and 48 h, respectively. The corresponding values for 125I-MIBG were 24.3% [21.0–27.5], 19.1% [11.7–26.5] and 17.4% [14.6–20.1]. No significant amount of activity was associated with high molecular weight species for either halobenzylguanidine, indicating that protein binding was not a major factor.


British Journal of Cancer | 1998

Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions

S. H. Cunningham; Robert J. Mairs; T. E. Wheldon; Philip Welsh; Ganesan Vaidyanathan; Michael R. Zalutsky


Bioconjugate Chemistry | 2001

Biological evaluation of ring- and side-chain-substituted m-iodobenzylguanidine analogues.

Ganesan Vaidyanathan; Sriram Shankar; Donna J. Affleck; Philip Welsh; Susan Slade; Michael R. Zalutsky


European Journal of Nuclear Medicine and Molecular Imaging | 2004

A 4-methyl-substituted meta-iodobenzylguanidine analogue with prolonged retention in human neuroblastoma cells

Ganesan Vaidyanathan; Philip Welsh; Katia C. Vitorello; Stacey Snyder; Henry S. Friedman; Michael R. Zalutsky

Collaboration


Dive into the Philip Welsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge