Philipp Drewe
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philipp Drewe.
Nature | 2011
Xiangchao Gan; Oliver Stegle; Jonas Behr; Joshua G. Steffen; Philipp Drewe; Katie L. Hildebrand; Rune Lyngsoe; Sebastian J. Schultheiss; Edward J. Osborne; Vipin T. Sreedharan; André Kahles; Regina Bohnert; Géraldine Jean; Paul S. Derwent; Paul J. Kersey; Eric J. Belfield; Nicholas P. Harberd; Eric Kemen; Christopher Toomajian; Paula X. Kover; Richard M. Clark; Gunnar Rätsch; Richard Mott
Genetic differences between Arabidopsis thaliana accessions underlie the plant’s extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.
eLife | 2015
Manu J. Dubin; Pei Zhang; Dazhe Meng; Marie Stanislas Remigereau; Edward J. Osborne; Francesco Paolo Casale; Philipp Drewe; André Kahles; Géraldine Jean; Bjarni J. Vilhjálmsson; Joanna Jagoda; Selen Irez; Viktor Voronin; Qiang Song; Quan Long; Gunnar Rätsch; Oliver Stegle; Richard M. Clark; Magnus Nordborg
Epigenome modulation potentially provides a mechanism for organisms to adapt, within and between generations. However, neither the extent to which this occurs, nor the mechanisms involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana accessions grown at two different temperatures. Environmental effects were limited to transposons, where CHH methylation was found to increase with temperature. Genome-wide association studies (GWAS) revealed that the extensive CHH methylation variation was strongly associated with genetic variants in both cis and trans, including a major trans-association close to the DNA methyltransferase CMT2. Unlike CHH methylation, CpG gene body methylation (GBM) was not affected by growth temperature, but was instead correlated with the latitude of origin. Accessions from colder regions had higher levels of GBM for a significant fraction of the genome, and this was associated with increased transcription for the genes affected. GWAS revealed that this effect was largely due to trans-acting loci, many of which showed evidence of local adaptation. DOI: http://dx.doi.org/10.7554/eLife.05255.001
The Plant Cell | 2013
Gabriele Drechsel; André Kahles; Anil K. Kesarwani; Eva Stauffer; Jonas Behr; Philipp Drewe; Gunnar Rätsch; Andreas Wachter
Alternative precursor mRNA splicing represents a major mechanism to increase transcriptome diversity in higher eukaryotes. This work demonstrates that a substantial fraction of the alternative splicing variants from Arabidopsis thaliana is subject to turn over via the RNA quality-control mechanism nonsense-mediated decay, having important implications for the regulation of gene expression. The nonsense-mediated decay (NMD) surveillance pathway can recognize erroneous transcripts and physiological mRNAs, such as precursor mRNA alternative splicing (AS) variants. Currently, information on the global extent of coupled AS and NMD remains scarce and even absent for any plant species. To address this, we conducted transcriptome-wide splicing studies using Arabidopsis thaliana mutants in the NMD factor homologs UP FRAMESHIFT1 (UPF1) and UPF3 as well as wild-type samples treated with the translation inhibitor cycloheximide. Our analyses revealed that at least 17.4% of all multi-exon, protein-coding genes produce splicing variants that are targeted by NMD. Moreover, we provide evidence that UPF1 and UPF3 act in a translation-independent mRNA decay pathway. Importantly, 92.3% of the NMD-responsive mRNAs exhibit classical NMD-eliciting features, supporting their authenticity as direct targets. Genes generating NMD-sensitive AS variants function in diverse biological processes, including signaling and protein modification, for which NaCl stress–modulated AS-NMD was found. Besides mRNAs, numerous noncoding RNAs and transcripts derived from intergenic regions were shown to be NMD responsive. In summary, we provide evidence for a major function of AS-coupled NMD in shaping the Arabidopsis transcriptome, having fundamental implications in gene regulation and quality control of transcript processing.
Nature Cell Biology | 2013
Stephanie Heinrich; Eva-Maria Geissen; Julia Kamenz; Susanne Trautmann; Christian Widmer; Philipp Drewe; Michael Knop; Nicole Radde; Jan Hasenauer; Silke Hauf
The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling.
Bioinformatics | 2013
Jonas Behr; André Kahles; Yi Zhong; Vipin T. Sreedharan; Philipp Drewe; Gunnar Rätsch
Motivation: High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. Results: We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. Availability: MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license. Contact: [email protected] and [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Nucleic Acids Research | 2013
Philipp Drewe; Oliver Stegle; Lisa Hartmann; André Kahles; Regina Bohnert; Andreas Wachter; Karsten M. Borgwardt; Gunnar Rätsch
Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
Bioinformatics | 2017
Yi Zhong; Theofanis Karaletsos; Philipp Drewe; Vipin T. Sreedharan; David Kuo; Kamini Singh; Hans-Guido Wendel; Gunnar Rätsch
Motivation: Deep sequencing based ribosome footprint profiling can provide novel insights into the regulatory mechanisms of protein translation. However, the observed ribosome profile is fundamentally confounded by transcriptional activity. In order to decipher principles of translation regulation, tools that can reliably detect changes in translation efficiency in case–control studies are needed. Results: We present a statistical framework and an analysis tool, RiboDiff, to detect genes with changes in translation efficiency across experimental treatments. RiboDiff uses generalized linear models to estimate the over-dispersion of RNA-Seq and ribosome profiling measurements separately, and performs a statistical test for differential translation efficiency using both mRNA abundance and ribosome occupancy. Availability and Implementation: RiboDiff webpage http://bioweb.me/ribodiff. Source code including scripts for preprocessing the FASTQ data are available at http://github.com/ratschlab/ribodiff. Contacts: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Bioinformatics | 2014
Vipin T. Sreedharan; Sebastian J. Schultheiss; Géraldine Jean; André Kahles; Regina Bohnert; Philipp Drewe; Pramod Kaushik Mudrakarta; Nico Görnitz; Georg Zeller; Gunnar Rätsch
We present Oqtans, an open-source workbench for quantitative transcriptome analysis, that is integrated in Galaxy. Its distinguishing features include customizable computational workflows and a modular pipeline architecture that facilitates comparative assessment of tool and data quality. Oqtans integrates an assortment of machine learning-powered tools into Galaxy, which show superior or equal performance to state-of-the-art tools. Implemented tools comprise a complete transcriptome analysis workflow: short-read alignment, transcript identification/quantification and differential expression analysis. Oqtans and Galaxy facilitate persistent storage, data exchange and documentation of intermediate results and analysis workflows. We illustrate how Oqtans aids the interpretation of data from different experiments in easy to understand use cases. Users can easily create their own workflows and extend Oqtans by integrating specific tools. Oqtans is available as (i) a cloud machine image with a demo instance at cloud.oqtans.org, (ii) a public Galaxy instance at galaxy.cbio.mskcc.org, (iii) a git repository containing all installed software (oqtans.org/git); most of which is also available from (iv) the Galaxy Toolshed and (v) a share string to use along with Galaxy CloudMan. Contact: [email protected], [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
RNA Biology | 2012
Lisa M. Smith; Lisa Hartmann; Philipp Drewe; Regina Bohnert; André Kahles; Christa Lanz; Gunnar Rätsch
Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3′ adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127% and 121%, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality.
BMC Bioinformatics | 2011
Sebastian J. Schultheiss; Géraldine Jean; Jonas Behr; Regina Bohnert; Philipp Drewe; Nico Görnitz; André Kahles; Pramod Mudrakarta; Vipin T. Sreedharan; Georg Zeller; Gunnar Rätsch
First published by BioMed Central: Schultheiss, Sebastian J.; Jean, Geraldine; Behr, Jonas; Bohnert, Regina; Drewe, Philipp; Gornitz, Nico; Kahles, Andre; Mudrakarta, Pramod; Sreedharan, Vipin T.; Zeller, Georg; Ratsch, Gunnar: Oqtans: a Galaxy-integrated workflow for quantitative transcriptome analysis from NGS Data - In: BMC Bioinformatics. - ISSN 1471-2105 (online). - 12 (2011), suppl. 11, art. A7. - doi:10.1186/1471-2105-12-S11-A7.