Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp G. Maass is active.

Publication


Featured researches published by Philipp G. Maass.


Journal of Molecular Medicine | 2014

Long non-coding RNA in health and disease

Philipp G. Maass; Friedrich C. Luft; Sylvia Bähring

Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-transcriptional gene regulation expands our knowledge of disease. Several associations between altered lncRNA function and gene expression have been linked to clinical disease phenotypes. Early advances have been made in developing lncRNAs as biomarkers. Several mouse models reveal that human lncRNAs have very diverse functions. Their involvement in gene and genome regulation as well as disease underscores the importance of lncRNA-mediated regulatory networks. Because of their tissue-specific expression potential, their function as activators or repressors, and their selective targeting of genes, lncRNAs are of potential therapeutic interest. We review the regulatory mechanisms of lncRNAs, their major functional principles, and discuss their role in Mendelian disorders, cancer, cardiovascular disease, and neurological disorders.


Journal of Clinical Investigation | 2012

A misplaced lncRNA causes brachydactyly in humans.

Philipp G. Maass; Andreas Rump; Herbert Schulz; Sigmar Stricker; Lisanne Schulze; Konrad Platzer; Atakan Aydin; Sigrid Tinschert; Mary B. Goldring; Friedrich C. Luft; Sylvia Bähring

Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape. Using chromosome conformation capturing, we identified a regulator on chromosome 12q that interacts in cis with PTHLH over a 24.4-megabase distance and in trans with the sex-determining region Y-box 9 (SOX9) gene on chromosome 17q. The element also harbored a long noncoding RNA (lncRNA). Silencing of the lncRNA, PTHLH, or SOX9 revealed a feedback mechanism involving an expression-dependent network in humans. In the BDE patients, the human lncRNA was upregulated by the disrupted chromosomal association. Moreover, the lncRNA occupancy at the PTHLH locus was reduced. Our results document what we believe to be a novel in cis- and in trans-acting DNA and lncRNA regulatory feedback element that is reciprocally regulated by coding genes. Furthermore, our findings provide a systematic and combinatorial view of how enhancers encoding lncRNAs may affect gene expression in normal development.


Journal of Hypertension | 2002

The BK channel β1 subunit gene is associated with human baroreflex and blood pressure regulation

Maik Gollasch; Jens Tank; Friedrich C. Luft; Jens Jordan; Philipp G. Maass; Christine Krasko; Arya M. Sharma; Andreas Busjahn; Sylvia Bähring

Background The baroreflex, which is important for the minute-to-minute regulation of blood pressure and heart rate, is influenced by genetic variance. Ion channels are important to baroreflex afferent and efferent function. Mice missing the β1 subunit of the Ca2+-sensitive potassium channel (BK) are hypertensive and have a reset baroreflex. We tested the hypothesis that variants in the gene (KCNMB1) coding for the BK β1 subunit are associated with baroreflex function. Methods We studied six single-nucleotide polymorphisms (SNPs) in KCNMB1. Results Four SNPs in intron 3, exon 4a, exon 4b and exon 4c gave significant results. For instance, exon 4b SNP AA individuals had higher heart rate variability, compared to CA, or CC persons, in particular in the high-frequency range. The low-frequency range showed no association. Consistent with the heart rate variability data, homozygous AA persons had greater baroreflex slopes than CA or CC persons, also in the high-frequency range. These associations could not be shown in the low-frequency range for heart rate variability and baroreflex slopes. Conclusions These data support the notion that variants in channel genes may be responsible for the great range in heart rate variability and baroreflex function observed in humans. Such variation may also play a role in the development of hypertension.


Nature Genetics | 2015

PDE3A mutations cause autosomal dominant hypertension with brachydactyly

Philipp G. Maass; Atakan Aydin; Friedrich C. Luft; Carolin Schächterle; Anja Weise; Sigmar Stricker; Carsten Lindschau; Martin Vaegler; Fatimunnisa Qadri; Hakan R. Toka; Herbert Schulz; Peter Krawitz; Dmitri Parkhomchuk; Jochen Hecht; Irene Hollfinger; Yvette Wefeld-Neuenfeld; Eireen Bartels-Klein; Astrid Mühl; Martin Kann; Herbert Schuster; David Chitayat; Martin G. Bialer; Thomas F. Wienker; Jurg Ott; Katharina Rittscher; Thomas Liehr; Jens Jordan; Ghislaine Plessis; Jens Tank; Knut Mai

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell–derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A–mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Human Molecular Genetics | 2010

A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E

Philipp G. Maass; Jutta Wirth; Atakan Aydin; Andreas Rump; Sigmar Stricker; Sigrid Tinschert; Miguel Otero; Kaneyuki Tsuchimochi; Mary B. Goldring; Friedrich C. Luft; Sylvia Bähring

Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.


Hypertension | 2015

Clinical Effects of Phosphodiesterase 3A Mutations in Inherited Hypertension With Brachydactyly

Okan Toka; Jens Tank; Carolin Schächterle; Atakan Aydin; Philipp G. Maass; Saban Elitok; Eireen Bartels-Klein; Irene Hollfinger; Carsten Lindschau; Knut Mai; Michael Boschmann; Gabriele Rahn; Matthew A. Movsesian; Thomas Müller; Andrea Doescher; Simone Gnoth; Astrid Mühl; Hakan R. Toka; Yvette Wefeld-Neuenfeld; Wolfgang Utz; Agnieszka Töpper; Jens Jordan; Jeanette Schulz-Menger; Enno Klussmann; Sylvia Bähring; Friedrich C. Luft

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A–mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.


Hypertension | 2008

Inversion Region for Hypertension and Brachydactyly on Chromosome 12p Features Multiple Splicing and Noncoding RNA

Sylvia Bähring; Martin Kann; Yvette Neuenfeld; Maolian Gong; David Chitayat; Hakan R. Toka; Okan Toka; Ghislaine Plessis; Philipp G. Maass; Anita Rauch; Atakan Aydin; Friedrich C. Luft

Autosomal-dominant hypertension and brachydactyly (Online Mendelian Inheritance in Man 112410) is a prototype-translational research project. We used interphase fluorescent in situ hybridization and discovered complex rearrangements on chromosome 12p in 5 families but elucidated a common inverted region in the linkage interval. The inversion contains no known gene. However, we found 5 expressed sequence tags in databases. We used 5′- and 3′-Rapid Amplification of cDNA Ends PCR for elongation of the transcripts in phenotype-relevant tissue (fetal aorta, fetal brain, and fetal cartilage). We detected tissue-specific multiple splicing with different exon usage of 32 exons in the gene-related structure. These different transcripts lack both open reading frames and Kozak sequences. In vitro transcription/translation experiments did not identify any peptide-related molecules. We then performed quantitative RT-PCR to test for differential expression of the various spliced transcripts in the total fibroblast RNA of affected and nonaffected Turkish family members. Skin fibroblasts of affected individuals have a significantly increased proliferation rate compared with nonaffected individuals. Ten of 12 spliced exon combinations representing all of the spliced variants do not show a significantly different RNA expression rate. However, 2 RT-PCR products are exclusively expressed in nonaffected individuals. Both reverse transcription amplicons share 1 exon. This result is surprising because of the autosomal-dominant mode of inheritance of the trait. RNA secondary prediction of this single exon results in a stable stem-loop structure known to be essential for microRNA processing. We are pursuing the possibility of microRNA expression in affected patients that leads to complete down regulation of a spliced transcript.


Journal of Molecular Medicine | 2017

A map of human circular RNAs in clinically relevant tissues

Philipp G. Maass; Petar Glažar; Sebastian Memczak; Gunnar Dittmar; Irene Hollfinger; Luisa Schreyer; Aisha V. Sauer; Okan Toka; Alessandro Aiuti; Friedrich C. Luft; Nikolaus Rajewsky

Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease.Key messagescircRNA resource catalog of 20 clinically relevant tissues.circRNA expression is highly tissue-specific.circRNA transcripts are often more abundant than their linear host RNAs.circRNAs can be differentially expressed in disease-associated genes.


Journal of Hypertension | 2002

A gene expression analysis in rat kidney following high and low salt intake

Peter Barta; Jan Monti; Philipp G. Maass; Kerstin Gorzelniak; Dominik Müller; Ralf Dechend; Friedrich C. Luft; Norbert Hubner; Arya M. Sharma

Background The effects of salt intake on renal regulation have been investigated for decades. To find new pathways and to demonstrate the utility of oligonucleotide expression arrays, we studied whole kidneys. Methods Eight Sprague–Dawley rats were divided into two groups. One group received a 6% salt (by weight) diet, while the other group received a 0.3%, otherwise identical, salt diet for 7 days. The rats were sacrificed after 7 days and the left kidney was subjected to RNA extraction. Oligonucleotide expression arrays (Affymetrix) were used to determine downregulation and upregulation, comparing high with low salt intake. Four rats from each group were studied separately. Results The experiments were reproducible. Thirty genes were downregulated with the high-salt diet, while 35 genes were upregulated. The renin gene, beta-2 glycoprotein-1, retinol binding protein, annexin VI, and the PTP2C protein tyrosine phosphatase were among the downregulated genes. The angiotensin II receptor type 1B receptor, HMG-CoA reductase, B7 antigen, and the rat calcium channel beta subunit III were among the upregulated genes. Differentially regulated were the p55 subunit (upregulated) and the p50 subunit (downregulated) of the phosphatidyl inositol 3-kinase enzyme complex. We verified our results by selecting a high-salt downregulated gene (renin) and an upregulated gene (B7 antigen) and subjecting these genes to real-time polymerase chain reaction. The results were consistent. Conclusion Oligonucleotide expression arrays can detect novel genes encoding for proteins not generally associated with responses to varied salt intake. Experiments of this nature have substantial limitations and require detailed verification. However, overall, the utility is promising.


Nature Structural & Molecular Biology | 2018

Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING)

Philipp G. Maass; A. Rasim Barutcu; David M. Shechner; Catherine L. Weiner; Marta Melé; John L. Rinn

Imaging and chromatin capture techniques have provided important insights into our understanding of nuclear organization. A limitation of these techniques is the inability to resolve allele-specific spatiotemporal properties of genomic loci in living cells. Here, we describe an allele-specific CRISPR live-cell DNA imaging technique (SNP-CLING) to provide the first comprehensive insights into allelic positioning across space and time in mouse embryonic stem cells and fibroblasts. With 3D imaging, we studied alleles on different chromosomes in relation to one another and relative to nuclear substructures such as the nucleolus. We find that alleles maintain similar positions relative to each other and the nucleolus; however, loci occupy unique positions. To monitor spatiotemporal dynamics by SNP-CLING, we performed 4D imaging and determined that alleles are either stably positioned or fluctuating during cell state transitions, such as apoptosis. SNP-CLING is a universally applicable technique that enables the dissection of allele-specific spatiotemporal genome organization in live cells.An allele-specific CRISPR-based DNA imaging technique provides insights into allelic positioning in live mouse cells. Spatiotemporal monitoring reveals that allele positions may fluctuate during cell state transitions.

Collaboration


Dive into the Philipp G. Maass's collaboration.

Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Sylvia Bähring

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Atakan Aydin

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hakan R. Toka

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Okan Toka

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Hollfinger

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Jens Jordan

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge