Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Khaitovich is active.

Publication


Featured researches published by Philipp Khaitovich.


Nature | 2011

The evolution of gene expression levels in mammalian organs

David Brawand; Magali Soumillon; Anamaria Necsulea; Philippe Julien; Gábor Csárdi; Patrick Harrigan; Manuela Weier; Angélica Liechti; Ayinuer Aximu-Petri; Martin Kircher; Frank W. Albert; Ulrich Zeller; Philipp Khaitovich; Frank Grützner; Sven Bergmann; Rasmus Nielsen; Svante Pääbo; Henrik Kaessmann

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.


PLOS Computational Biology | 2009

Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures

Steve Hoffmann; Christian Otto; Stefan Kurtz; Cynthia M. Sharma; Philipp Khaitovich; Jörg Vogel; Peter F. Stadler; Jörg Hackermüller

With few exceptions, current methods for short read mapping make use of simple seed heuristics to speed up the search. Most of the underlying matching models neglect the necessity to allow not only mismatches, but also insertions and deletions. Current evaluations indicate, however, that very different error models apply to the novel high-throughput sequencing methods. While the most frequent error-type in Illumina reads are mismatches, reads produced by 454s GS FLX predominantly contain insertions and deletions (indels). Even though 454 sequencers are able to produce longer reads, the method is frequently applied to small RNA (miRNA and siRNA) sequencing. Fast and accurate matching in particular of short reads with diverse errors is therefore a pressing practical problem. We introduce a matching model for short reads that can, besides mismatches, also cope with indels. It addresses different error models. For example, it can handle the problem of leading and trailing contaminations caused by primers and poly-A tails in transcriptomics or the length-dependent increase of error rates. In these contexts, it thus simplifies the tedious and error-prone trimming step. For efficient searches, our method utilizes index structures in the form of enhanced suffix arrays. In a comparison with current methods for short read mapping, the presented approach shows significantly increased performance not only for 454 reads, but also for Illumina reads. Our approach is implemented in the software segemehl available at http://www.bioinf.uni-leipzig.de/Software/segemehl/.


Nature | 2005

A genome-wide comparison of recent chimpanzee and human segmental duplications

Ze Cheng; Mario Ventura; Xinwei She; Philipp Khaitovich; Tina Graves; Kazutoyo Osoegawa; Deanna M. Church; Pieter J. deJong; Richard Wilson; Svante Pääbo; Mariano Rocchi; Evan E. Eichler

We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4–5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).


PLOS Biology | 2004

A Neutral Model of Transcriptome Evolution

Philipp Khaitovich; Gunter Weiss; Michael Lachmann; Ines Hellmann; Wolfgang Enard; Bjoern Muetzel; Ute Wirkner; Wilhelm Ansorge; Svante Pääbo

Microarray technologies allow the identification of large numbers of expression differences within and between species. Although environmental and physiological stimuli are clearly responsible for changes in the expression levels of many genes, it is not known whether the majority of changes of gene expression fixed during evolution between species and between various tissues within a species are caused by Darwinian selection or by stochastic processes. We find the following: (1) expression differences between species accumulate approximately linearly with time; (2) gene expression variation among individuals within a species correlates positively with expression divergence between species; (3) rates of expression divergence between species do not differ significantly between intact genes and expressed pseudogenes; (4) expression differences between brain regions within a species have accumulated approximately linearly with time since these regions emerged during evolution. These results suggest that the majority of expression differences observed between species are selectively neutral or nearly neutral and likely to be of little or no functional significance. Therefore, the identification of gene expression differences between species fixed by selection should be based on null hypotheses assuming functional neutrality. Furthermore, it may be possible to apply a molecular clock based on expression differences to infer the evolutionary history of tissues.


Nature Reviews Genetics | 2006

Evolution of primate gene expression

Philipp Khaitovich; Wolfgang Enard; Michael Lachmann; Svante Pääbo

It has been suggested that evolutionary changes in gene expression account for most phenotypic differences between species, in particular between humans and apes. What general rules can be described governing expression evolution? We find that a neutral model where negative selection and divergence time are the major factors is a useful null hypothesis for both transcriptome and genome evolution. Two tissues that stand out with regard to gene expression are the testes, where positive selection has exerted a substantial influence in both humans and chimpanzees, and the brain, where gene expression has changed less than in other organs but acceleration might have occurred in human ancestors.


BMC Genomics | 2009

Estimating accuracy of RNA-Seq and microarrays with proteomics

Xing Fu; Ning Fu; Song Guo; Zheng Yan; Ying Xu; Hao Hu; Corinna Menzel; Wei Chen; Yixue Li; Rong Zeng; Philipp Khaitovich

BackgroundMicroarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown.ResultsIn this study, we evaluate relative accuracy of microarrays and transcriptome sequencing (RNA-Seq) using third methodology: proteomics. We find that RNA-Seq provides a better estimate of absolute expression levels.ConclusionOur result shows that in terms of overall technical performance, RNA-Seq is the technique of choice for studies that require accurate estimation of absolute transcript levels.


Nature | 2004

DNA sequence and comparative analysis of chimpanzee chromosome 22

H. Watanabe; Asao Fujiyama; Masahira Hattori; Todd D. Taylor; Atsushi Toyoda; Yoko Kuroki; Hideki Noguchi; Alia BenKahla; Hans Lehrach; Ralf Sudbrak; Michael Kube; S. Taenzer; P. Galgoczy; Matthias Platzer; M. Scharfe; Gabriele Nordsiek; Helmut Blöcker; Ines Hellmann; Philipp Khaitovich; Svante Pääbo; Richard Reinhardt; H.-J. Zheng; Xianglin Zhang; Genfeng Zhu; B.-F. Wang; Gang Fu; Shuangxi Ren; Guoping Zhao; Zhu Chen; Yong Seok Lee

Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Transcriptional neoteny in the human brain

Henriette Franz; Zheng Yan; Anna Lorenc; Song Guo; Thomas Giger; Janet Kelso; Birgit Nickel; Michael Dannemann; Sabine Bahn; Maree J. Webster; Cynthia Shannon Weickert; Michael Lachmann; Svante Pääbo; Philipp Khaitovich

In development, timing is of the utmost importance, and the timing of developmental processes often changes as organisms evolve. In human evolution, developmental retardation, or neoteny, has been proposed as a possible mechanism that contributed to the rise of many human-specific features, including an increase in brain size and the emergence of human-specific cognitive traits. We analyzed mRNA expression in the prefrontal cortex of humans, chimpanzees, and rhesus macaques to determine whether human-specific neotenic changes are present at the gene expression level. We show that the brain transcriptome is dramatically remodeled during postnatal development and that developmental changes in the human brain are indeed delayed relative to other primates. This delay is not uniform across the human transcriptome but affects a specific subset of genes that play a potential role in neural development.


Genome Research | 2013

Birth and expression evolution of mammalian microRNA genes

Julien Meunier; Frédéric Lemoine; Magali Soumillon; Angélica Liechti; Manuela Weier; Katerina Guschanski; Haiyang Hu; Philipp Khaitovich; Henrik Kaessmann

MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.


PLOS Biology | 2011

MicroRNA-Driven Developmental Remodeling in the Brain Distinguishes Humans from Other Primates

Xiling Liu; Lin Tang; Zheng Yan; Haiyang Hu; Song Guo; Xi Jiang; Xiaoyu Zhang; Guohua Xu; Gangcai Xie; Na Li; Yuhui Hu; Wei Chen; Svante Pääbo; Philipp Khaitovich

Comparison of human, chimpanzee, and macaque brain transcriptomes reveals a significant developmental remodeling in the human prefrontal cortex, potentially shaped by microRNA.

Collaboration


Dive into the Philipp Khaitovich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Haiyang Hu

CAS-MPG Partner Institute for Computational Biology

View shared research outputs
Top Co-Authors

Avatar

Xi Jiang

CAS-MPG Partner Institute for Computational Biology

View shared research outputs
Top Co-Authors

Avatar

Liu He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge