Philipp Krapf
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philipp Krapf.
Molecular Imaging and Biology | 2015
Markus Dietlein; Carsten Kobe; Georg Kuhnert; Simone Stockter; Thomas Fischer; Klaus Schomäcker; Matthias Schmidt; Felix Dietlein; Boris D. Zlatopolskiy; Philipp Krapf; Raphael Richarz; Stephan Neubauer; Alexander Drzezga; Bernd Neumaier
PurposeGallium-68 (Ga-68)-labeled tracers for imaging expression of the prostate-specific membrane antigen (PSMA) such as the [68Ga]Ga-PSMA-HBED-CC have already demonstrated high potential for the detection of recurrent prostate cancer. However, compared to Ga-68, a labeling with fluorine-18 (F-18) would offer advantages with respect to availability, production amount, and image resolution. [18F]DCFPyL is a promising F-18-labeled candidate for PSMA-positron emission tomography (PET) imaging that has been recently introduced. In the current study, we aimed to compare [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL for clinical use in biochemically relapsed prostate cancer.ProceduresIn 14 selected patients with PSA relapse of prostate cancer, [18F]DCFPyL PET/X-ray computed tomography (CT) was performed in addition to [68Ga]Ga-PSMA-HBED-CC PET/CT. A systematic comparison was carried out between results obtained with both tracers with regard to the number of detected PSMA-positive lesions, the standardized uptake value (SUV)max and the lesion to background ratios.ResultsAll suspicious lesions identified by [68Ga]Ga-PSMA-HBED-CC were also detected with [18F]DCFPyL. In three patients, additional lesions were observed using [18F]DCFPyL PET/CT. The mean SUVmax in the concordant [18F]DCFPyL PSMA-positive lesions was significantly higher as compared to [68Ga]Ga-PSMA-HBED-CC (14.5 vs. 12.2, p = 0.028, n = 15). The mean tumor to background ratios (n = 15) were significantly higher for [18F]DCFPyL compared to [68Ga]Ga-PSMA-HBED-CC using kidney, spleen, or parotid as reference organs (p = 0.006, p = 0.002, p = 0.008), but no significant differences were found using the liver (p = 0.167) or the mediastinum (p = 0.363) as reference organs.Conclusion[18F]DCFPyL PET/CT provided a high image quality and visualized small prostate lesions with excellent sensitivity. [18F]DCFPyL represents a highly promising alternative to [68Ga]Ga-PSMA-HBED-CC for PSMA-PET/CT imaging in relapsed prostate cancer.
Organic and Biomolecular Chemistry | 2014
Raphael Richarz; Philipp Krapf; Fadi Zarrad; Elizaveta A. Urusova; Bernd Neumaier; Boris D. Zlatopolskiy
A novel, efficient, time-saving and reliable radiolabeling procedure via nucleophilic substitution with [(18)F]fluoride is described. Different radiolabeled aliphatic and aromatic compounds were prepared in high radiochemical yields simply by heating of quaternary anilinium, diaryliodonium and triarylsulfonium [(18)F]fluorides in suitable solvents. The latter were obtained via direct elution of (18)F(-) from an anion exchange resin with alcoholic solutions of onium precursors. Neither azeotropic evaporation of water, nor a base, nor any other additives like cryptands or crown ethers were necessary. Due to its simplicity this method should be highly suitable for automated radiosyntheses, especially in microfluidic devices.
Chemistry: A European Journal | 2014
Boris D. Zlatopolskiy; Philipp Krapf; Raphael Richarz; Holm Frauendorf; Felix M. Mottaghy; Bernd Neumaier
Owing to their broad spectrum of biological activities and low toxicity, β-lactams are attractive lead structures for the design of novel molecular probes. However, the synthesis of positron emission tomography (PET)-isotope-labelled β-lactams has not yet been reported. Herein, we describe the simple preparation of radiofluorinated β-lactams by using the fast Kinugasa reaction between (18)F-labelled nitrone [(18)F]-1 and alkynes of different reactivity. Additionally, (18)F-labelled fused β-lactams were obtained through the reaction of a cyclic nitrone 7 with radiofluorinated alkynes [(18)F]-6 a,b. Radiochemical yields of the Kinugasa reaction products could be significantly increased by the use of different Cu(I) ligands, which additionally allowed a reduction in the amount of precursor and/or reaction time. Model radiofluorinated β-lactam-peptide and protein conjugates ([(18)F]-10 and (18)F-labelled BSA conjugate) were efficiently obtained in high yield under mild conditions (aq. MeCN, ambient temperature) within a short reaction time, demonstrating the suitability of the developed method for radiolabelling of sensitive molecules such as biopolymers.
Molecules | 2017
Fadi Zarrad; Boris D. Zlatopolskiy; Philipp Krapf; Johannes Zischler; Bernd Neumaier
In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the production of clinically relevant positron emission tomography (PET) tracers was investigated. To this end, Cu-mediated radiofluorodestannylation using trimethyl(phenyl)tin as a model substrate was re-evaluated with respect to different reaction parameters. The resulting labeling protocol was applied for 18F-fluorination of different electron-rich, -neutral and -poor arylstannyl substrates in RCCs of 16–88%. Furthermore, this method was utilized for the synthesis of 18F-labeled aromatic amino acids from additionally N-Boc protected commercially available stannyl precursors routinely applied for electrophilic radiohalogenation. Finally, an automated synthesis of 6-[18F]fluoro-l-m-tyrosine (6-[18F]FMT), 2-[18F]fluoro-l-tyrosine (2-[18F]F-Tyr), 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine (6-[18F]FDOPA) and 3-O-methyl-6-[18F]FDOPA ([18F]OMFD) was established furnishing these PET probes in isolated radiochemical yields (RCYs) of 32–54% on a preparative scale. Remarkably, the automated radiosynthesis of 6-[18F]FDOPA afforded an exceptionally high RCY of 54 ± 5% (n = 5).
Scientific Reports | 2018
Heike Endepols; Felix M. Mottaghy; Sakine Simsekyilmaz; Jan Bucerius; Felix Vogt; Oliver Winz; Raphael Richarz; Philipp Krapf; Bernd Neumaier; Boris D. Zlatopolskiy; Agneiszka Morgenroth
The short- and long-term success of intravascular stents depends on a proper re-endothelialisation after the intervention-induced endothelial denudation. The aim of this study was to evaluate the potential of in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with prostate-specific membrane antigen PSMA) expression as a marker of re-endothelialisation. Fifteen Sprague Dawley rats underwent unilateral balloon angioplasty of the common carotid artery (CCA). Positron emission tomography (PET) using the GCPII-targeting tracer [18F]DCFPyL was performed after 5–21 days (scan 60–120 min post injection). In two animals, the GCPII inhibitor PMPA (23 mg/kg BW) was added to the tracer solution. After PET, both CCAs were removed, dissected, and immunostained with the GCPII specific antibody YPSMA-1. Difference of GCPII expression between both CCAs was established by PCR analysis. [18F]DCFPyL uptake was significantly higher in the ipsilateral compared to the contralateral CCA with an ipsi-/contralateral ratio of 1.67 ± 0.39. PMPA blocked tracer binding. The selective expression of GCPII in endothelial cells of the treated CCA was confirmed by immunohistological staining. PCR analysis verified the site-specific GCPII expression. By using a molecular imaging marker of GCPII expression, we provide the first non-invasive in vivo delineation of re-endothelialisation after angioplasty.
Chemistry: A European Journal | 2015
Boris D. Zlatopolskiy; Johannes Zischler; Philipp Krapf; Fadi Zarrad; Elizaveta A. Urusova; Elena Kordys; Heike Endepols; Bernd Neumaier
Applied Radiation and Isotopes | 2016
Johannes Zischler; Philipp Krapf; Raphael Richarz; Boris D. Zlatopolskiy; Bernd Neumaier
European Journal of Organic Chemistry | 2016
Philipp Krapf; Raphael Richarz; Elizaveta A. Urusova; Bernd Neumaier; Boris D. Zlatopolskiy
The Journal of Nuclear Medicine | 2016
Philipp Krapf; Raphael Richarz; Elizaveta Urusova; Bernd Neumaier; Boris D. Zlatopolskiy
European Journal of Nuclear Medicine and Molecular Imaging | 2016
Felix M. Mottaghy; Boris Zlatopolskiy; Felix Vogt; Sakine Simsekyilmaz; Agnieszka Morgenroth; Oliver Winz; Jan Bucerius; Philipp Krapf; Bernd Neumaier; Raphael Richarz; Heike Endepols