Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Muigg is active.

Publication


Featured researches published by Philipp Muigg.


IEEE Transactions on Visualization and Computer Graphics | 2009

A Multi-Threading Architecture to Support Interactive Visual Exploration

Harald Piringer; Christian Tominski; Philipp Muigg; Wolfgang Berger

During continuous user interaction, it is hard to provide rich visual feedback at interactive rates for datasets containing millions of entries. The contribution of this paper is a generic architecture that ensures responsiveness of the application even when dealing with large data and that is applicable to most types of information visualizations. Our architecture builds on the separation of the main application thread and the visualization thread, which can be cancelled early due to user interaction. In combination with a layer mechanism, our architecture facilitates generating previews incrementally to provide rich visual feedback quickly. To help avoiding common pitfalls of multi-threading, we discuss synchronization and communication in detail. We explicitly denote design choices to control trade-offs. A quantitative evaluation based on the system VI S P L ORE shows fast visual feedback during continuous interaction even for millions of entries. We describe instantiations of our architecture in additional tools.


IEEE Transactions on Visualization and Computer Graphics | 2008

Hypothesis Generation in Climate Research with Interactive Visual Data Exploration

Johannes Kehrer; F. Ladstädter; Philipp Muigg; Helmut Doleisch; Andrea K. Steiner; Helwig Hauser

One of the most prominent topics in climate research is the investigation, detection, and allocation of climate change. In this paper, we aim at identifying regions in the atmosphere (e.g., certain height layers) which can act as sensitive and robust indicators for climate change. We demonstrate how interactive visual data exploration of large amounts of multi-variate and time-dependent climate data enables the steered generation of promising hypotheses for subsequent statistical evaluation. The use of new visualization and interaction technology-in the context of a coordinated multiple views framework-allows not only to identify these promising hypotheses, but also to efficiently narrow down parameters that are required in the process of computational data analysis. Two datasets, namely an ECHAM5 climate model run and the ERA-40 reanalysis incorporating observational data, are investigated. Higher-order information such as linear trends or signal-to-noise ratio is derived and interactively explored in order to detect and explore those regions which react most sensitively to climate change. As one conclusion from this study, we identify an excellent potential for usefully generalizing our approach to other, similar application cases, as well.


ieee vgtc conference on visualization | 2008

A four-level focus+context approach to interactive visual analysis of temporal features in large scientific data

Philipp Muigg; Johannes Kehrer; Steffen Oeltze; Harald Piringer; Helmut Doleisch; Bernhard Preim; Helwig Hauser

In this paper we present a new approach to the interactive visual analysis of time‐dependent scientific data – both from measurements as well as from computational simulation – by visualizing a scalar function over time for each of tenthousands or even millions of sample points. In order to cope with overdrawing and cluttering, we introduce a new four‐level method of focus+context visualization. Based on a setting of coordinated, multiple views (with linking and brushing), we integrate three different kinds of focus and also the context in every single view. Per data item we use three values (from the unit interval each) to represent to which degree the data item is part of the respective focus level. We present a color compositing scheme which is capable of expressing all three values in a meaningful way, taking semantics and their relations amongst each other (in the context of our multiple linked view setup) into account. Furthermore, we present additional image‐based postprocessing methods to enhance the visualization of large sets of function graphs, including a texture‐based technique based on line integral convolution (LIC). We also propose advanced brushing techniques which are specific to the time‐dependent nature of the data (in order to brush patterns over time more efficiently). We demonstrate the usefulness of the new approach in the context of medical perfusion data.


IEEE Transactions on Visualization and Computer Graphics | 2007

Interactive Visual Analysis of Perfusion Data

Steffen Oeltze; Helmut Doleisch; Helwig Hauser; Philipp Muigg; Bernhard Preim

Perfusion data are dynamic medical image data which characterize the regional blood flow in human tissue. These data bear a great potential in medical diagnosis, since diseases can be better distinguished and detected at an earlier stage compared to static image data. The wide-spread use of perfusion data is hampered by the lack of efficient evaluation methods. For each voxel, a time-intensity curve characterizes the enhancement of a contrast agent. Parameters derived from these curves characterize the perfusion and have to be integrated for diagnosis. The diagnostic evaluation of this multi-field data is challenging and time-consuming due to its complexity. For the visual analysis of such datasets, feature-based approaches allow to reduce the amount of data and direct the user to suspicious areas. We present an interactive visual analysis approach for the evaluation of perfusion data. For this purpose, we integrate statistical methods and interactive feature specification. Correlation analysis and Principal Component Analysis (PCA) are applied for dimension reduction and to achieve a better understanding of the inter-parameter relations. Multiple, linked views facilitate the definition of features by brushing multiple dimensions. The specification result is linked to all views establishing a focus+context style of visualization in 3D. We discuss our approach with respect to clinical datasets from the three major application areas: ischemic stroke diagnosis, breast tumor diagnosis, as well as the diagnosis of the coronary heart disease (CHD). It turns out that the significance of perfusion parameters strongly depends on the individual patient, scanning parameters, and data pre-processing.


Journal of Atmospheric and Oceanic Technology | 2010

Exploration of Climate Data Using Interactive Visualization

F. Ladstädter; Andrea K. Steiner; B. C. Lackner; Barbara Pirscher; Gottfried Kirchengast; Johannes Kehrer; Helwig Hauser; Philipp Muigg; Helmut Doleisch

In atmospheric and climate research, the increasing amount of data available from climate models and observations provides new challenges for data analysis. The authors present interactive visual exploration as an innovative approach to handle large datasets. Visual exploration does not require any previous knowledge about the data, as is usually the case with classical statistics. It facilitates iterative and interactive browsing of the parameter space to quickly understand the data characteristics, to identify deficiencies, to easily focus on interesting features, and to come up with new hypotheses about the data. These properties extend the common statistical treatment of data, and provide a fundamentally different approach. The authors demonstrate the potential of this technology by exploring atmospheric climate data from different sources including reanalysis datasets, climate models, and radio occultation satellite data. Results are compared to those from classical statistics, revealing the complementary advantages of visual exploration. Combining both the analytical precision of classical statistics and the holistic power of interactive visual exploration, the usual workflow of studying climate data can be enhanced.


IEEE Transactions on Visualization and Computer Graphics | 2011

Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface

Johannes Kehrer; Philipp Muigg; Helmut Doleisch; Helwig Hauser

We present a systematic approach to the interactive visual analysis of heterogeneous scientific data. The data consist of two interrelated parts given on spatial grids over time (e.g., atmosphere and ocean part from a coupled climate model). By integrating both data parts in a framework of coordinated multiple views (with linking and brushing), the joint investigation of features across the data parts is enabled. An interface is constructed between the data parts that specifies 1) which grid cells in one part are related to grid cells in the other part, and vice versa, 2) how selections (in terms of feature extraction via brushing) are transferred between the two parts, and 3) how an update mechanism keeps the feature specification in both data parts consistent during the analysis. We also propose strategies for visual analysis that result in an iterative refinement of features specified across both data parts. Our approach is demonstrated in the context of a complex simulation of fluid-structure interaction and a multirun climate simulation.


IEEE Transactions on Visualization and Computer Graphics | 2008

Parallel Vectors Criteria for Unsteady Flow Vortices

Raphael Fuchs; Ronald Peikert; Helwig Hauser; Filip Sadlo; Philipp Muigg

Feature-based flow visualization is naturally dependent on feature extraction. To extract flow features, often higher order properties of the flow data are used such as the Jacobian or curvature properties, implicitly describing the flow features in terms of their inherent flow characteristics (for example, collinear flow and vorticity vectors). In this paper, we present recent research that leads to the (not really surprising) conclusion that feature extraction algorithms need to be extended to a time-dependent analysis framework (in terms of time derivatives) when dealing with unsteady flow data. Accordingly, we present two extensions of the parallel-vectors-based vortex extraction criteria to the time-dependent domain and show the improvements of feature-based flow visualization in comparison to the steady versions of this extraction algorithm both in the context of a high-resolution data set, that is, a simulation specifically designed to evaluate our new approach and for a real-world data set from a concrete application.


IEEE Transactions on Visualization and Computer Graphics | 2009

Visual Exploration of Nasal Airflow

Stefan Zachow; Philipp Muigg; Thomas Hildebrandt; Helmut Doleisch; Hans-Christian Hege

Rhinologists are often faced with the challenge of assessing nasal breathing from a functional point of view to derive effective therapeutic interventions. While the complex nasal anatomy can be revealed by visual inspection and medical imaging, only vague information is available regarding the nasal airflow itself: Rhinomanometry delivers rather unspecific integral information on the pressure gradient as well as on total flow and nasal flow resistance. In this article we demonstrate how the understanding of physiological nasal breathing can be improved by simulating and visually analyzing nasal airflow, based on an anatomically correct model of the upper human respiratory tract. In particular we demonstrate how various information visualization (InfoVis) techniques, such as a highly scalable implementation of parallel coordinates, time series visualizations, as well as unstructured grid multi-volume rendering, all integrated within a multiple linked views framework, can be utilized to gain a deeper understanding of nasal breathing. Evaluation is accomplished by visual exploration of spatio-temporal airflow characteristics that include not only information on flow features but also on accompanying quantities such as temperature and humidity. To our knowledge, this is the first in-depth visual exploration of the physiological function of the nose over several simulated breathing cycles under consideration of a complete model of the nasal airways, realistic boundary conditions, and all physically relevant time-varying quantities.


IEEE Transactions on Visualization and Computer Graphics | 2007

Scalable Hybrid Unstructured and Structured Grid Raycasting

Philipp Muigg; Markus Hadwiger; Helmut Doleisch; Helwig Hauser

This paper presents a scalable framework for real-time raycasting of large unstructured volumes that employs a hybrid bricking approach. It adaptively combines original unstructured bricks in important (focus) regions, with structured bricks that are resampled on demand in less important (context) regions. The basis of this focus+context approach is interactive specification of a scalar degree of interest (DOI) function. Thus, rendering always considers two volumes simultaneously: a scalar data volume, and the current DOI volume. The crucial problem of visibility sorting is solved by raycasting individual bricks and compositing in visibility order from front to back. In order to minimize visual errors at the grid boundary, it is always rendered accurately, even for resampled bricks. A variety of different rendering modes can be combined, including contour enhancement. A very important property of our approach is that it supports a variety of cell types natively, i.e., it is not constrained to tetrahedral grids, even when interpolation within cells is used. Moreover, our framework can handle multi-variate data, e.g., multiple scalar channels such as temperature or pressure, as well as time-dependent data. The combination of unstructured and structured bricks with different quality characteristics such as the type of interpolation or resampling resolution in conjunction with custom texture memory management yields a very scalable system.


ieee vgtc conference on visualization | 2007

Integrating local feature detectors in the interactive visual analysis of flow simulation data

Raphael Bürger; Philipp Muigg; Martin Ilcík; Helmut Doleisch; Helwig Hauser

We present smooth formulations of common vortex detectors that allow a seamless integration into the concept of interactive visual analysis of flow simulation data. We express the originally binary feature detectors as fuzzy-sets that can be combined using the linking and brushing concepts of interactive visual analysis. Both interaction and visualization gain from having multiple detectors concurrently available and from the ability to combine them. An application study on automotive data reveals how these vortex detectors combine and perform in praxis.

Collaboration


Dive into the Philipp Muigg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Hadwiger

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduard Gröller

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge