Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Preiss is active.

Publication


Featured researches published by Philipp Preiss.


Nature | 2011

Quantum simulation of antiferromagnetic spin chains in an optical lattice

Jonathan Simon; Waseem Bakr; Ruichao Ma; M. Eric Tai; Philipp Preiss; Markus Greiner

Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.


Nature | 2015

Measuring entanglement entropy in a quantum many-body system.

Rajibul Islam; Ruichao Ma; Philipp Preiss; M. Eric Tai; Alexander Lukin; Matthew Rispoli; Markus Greiner

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.


Science | 2016

Quantum thermalization through entanglement in an isolated many-body system.

Adam Kaufman; M. Eric Tai; Alexander Lukin; Matthew Rispoli; Robert Schittko; Philipp Preiss; Markus Greiner

To thermalize, or not to thermalize? Intuition tells us that an isolated physical system subjected to a sudden change (i.e., quenching) will evolve in a way that maximizes its entropy. If the system is in a pure, zero-entropy quantum state, it is expected to remain so even after quenching. How do we then reconcile statistical mechanics with quantum laws? To address this question, Kaufman et al. used their quantum microscope to study strings of six rubidium atoms confined in the wells of an optical lattice (see the Perspective by Polkovnikov and Sels). When tunneling along the strings was suddenly switched on, the strings as a whole remained in a pure state, but smaller subsets of two or three atoms conformed to a thermal distribution. The force driving the thermalization was quantum entanglement. Science, this issue p. 794; see also p. 752 Single-site microscopy of strings of rubidium atoms in an optical lattice shows thermalization on a local scale. Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis.


Nature | 2011

Orbital excitation blockade and algorithmic cooling in quantum gases

Waseem Bakr; Philipp Preiss; M. Eric Tai; Ruichao Ma; Jonathan Simon; Markus Greiner

Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.


Physical Review Letters | 2011

Photon-Assisted Tunneling in a Biased Strongly Correlated Bose Gas

Ruichao Ma; Ming Eric Tai; Philipp Preiss; Waseem Bakr; Jonathan Simon; Markus Greiner

We study the impact of coherently generated lattice photons on an atomic Mott insulator subjected to a uniform force. Analogous to an array of tunnel-coupled and biased quantum dots, we observe sharp, interaction-shifted photon-assisted tunneling resonances corresponding to tunneling one and two lattice sites either with or against the force and resolve multiorbital shifts of these resonances. By driving a Landau-Zener sweep across such a resonance, we realize a quantum phase transition between a paramagnet and an antiferromagnet and observe quench dynamics when the system is tuned to the critical point. Direct extensions will produce gauge fields and site-resolved spin flips, for topological physics and quantum computing.


Nature | 2017

Microscopy of the interacting Harper–Hofstadter model in the two-body limit

M. Eric Tai; Alexander Lukin; Matthew Rispoli; Robert Schittko; Tim Menke; Dan Borgnia; Philipp Preiss; Fabian Grusdt; Adam Kaufman; Markus Greiner

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement. Although these phases were discovered in a solid-state setting, recent innovations in systems of ultracold neutral atoms—uncharged atoms that do not naturally experience a Lorentz force—allow the synthesis of artificial magnetic, or gauge, fields. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper–Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.


Optics Express | 2016

Ultra-precise holographic beam shaping for microscopic quantum control

Philip Zupancic; Philipp Preiss; Ruichao Ma; Alexander Lukin; M. Eric Tai; Matthew Rispoli; Rajibul Islam; Markus Greiner

High-resolution addressing of individual ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrations of up to several λ and reduces them to λ/50, leading to light patterns with a precision on the 10-4 level. We demonstrate aberration-compensated beam shaping in an optical lattice experiment and perform single-site addressing in a quantum gas microscope for 87Rb.


Physical Review A | 2017

Probing the conformal Calabrese-Cardy scaling with cold atoms

Judah Unmuth-Yockey; Jin Zhang; Philipp Preiss; Li-Ping Yang; Shan-Wen Tsai; Y. Meurice

We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Renyi entanglement entropy S_2, can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c. We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT with c=1. This can be accomplished with a very small hoping parameter J, in contrast to existing studies with density one where a much larger J is needed. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical O(2) model with a chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. S_2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8)\ln(N_s), for N_s sites with open boundary conditions, provided that the large subleading corrections are taken into account.


Science | 2015

Strongly correlated quantum walks in optical lattices.

Philipp Preiss; Ruichao Ma; M. Eric Tai; Alexander Lukin; Matthew Rispoli; Philip Zupancic; Yoav Lahini; Rajibul Islam; Markus Greiner


Physical Review A | 2015

Quantum gas microscopy with spin, atom-number, and multilayer readout

Philipp Preiss; Ruichao Ma; M. Eric Tai; Jonathan Simon; Markus Greiner

Collaboration


Dive into the Philipp Preiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajibul Islam

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge