Philipp R. Matthes
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philipp R. Matthes.
Journal of Materials Chemistry | 2012
Philipp R. Matthes; Christoph J. Höller; Marit Mai; Joachim G. Heck; Stefan J. Sedlmaier; Sebastian Schmiechen; Claus Feldmann; Wolfgang Schnick; Klaus Müller-Buschbaum
The series of anhydrous lanthanide chlorides LnCl3, Ln = Pr–Tb, and 4,4′-bipyridine (bipy) constitute isotypic MOFs of the formula 2∞[Ln2Cl6(bipy)3]·2bipy. The europium and terbium containing compounds both exhibit luminescence of the referring trivalent lanthanide ions, giving a red luminescence for Eu3+ and a green luminescence for Tb3+ triggered by an efficient antenna effect of the 4,4′-bipyridine linkers. Mixing of different lanthanides in one MOF structure was undertaken to investigate the potential of this MOF system for colour tuning of the luminescence. Based on the gadolinium containing compound, co-doping with different amounts of europium and terbium proves successful and yields solid solutions of the formula 2∞[Gd2−x−yEuxTbyCl6(bipy)3]·2bipy (1–8), 0 ≤ x, y ≤ 0.5. The series of MOFs exhibits the opportunity of tuning the emission colour in-between green and red. Depending on the atomic ratio Gd:Eu:Tb, the yellow region was covered for the first time for an oxygen/carboxylate-free MOF system. In addition to a ligand to metal energy transfer (LMET) from the lowest ligand-centered triplet state of 4,4′-bipyridine, a metal to metal energy transfer (MMET) between 4f-levels from Tb3+ to Eu3+ is as well vital for the emission colour. However, no involvement of Gd3+ in energy transfers is observed rendering it a suitable host lattice ion and connectivity centre for diluting the other two rare earth ions in the solid state. The materials retain their luminescence during activation of the MOFs for microporosity.
Journal of the American Chemical Society | 2013
Jens-Christoph Rybak; Michael Hailmann; Philipp R. Matthes; Alexander Zurawski; Jörn Nitsch; Andreas Steffen; Joachim G. Heck; Claus Feldmann; Stefan Götzendörfer; Jürgen Meinhardt; Gerhard Sextl; Holger Kohlmann; Stefan J. Sedlmaier; Wolfgang Schnick; Klaus Müller-Buschbaum
The rare case of a metal-triggered broad-band yellow emitter among inorganic-organic hybrid materials was achieved by in situ codoping of the novel imidazolate metal-organic framework ∞(3)[Ba(Im)2] with divalent europium. The emission maximum of this dense framework is in the center of the yellow gap of primary light-emitting diode phosphors. Up to 20% Eu2+ can be added to replace Ba2+ as connectivity centers without causing observable phase segregation. High-resolution energy-dispersive X-ray spectroscopy showed that incorporation of even 30% Eu2+ is possible on an atomic level, with 2-10% Eu2+ giving the peak quantum efficiency (QE = 0.32). The yellow emission can be triggered by two processes: direct excitation of Eu2+ and an antenna effect of the imidazolate linkers. The emission is fully europium-centered, involving 5d → 4f transitions, and depends on the imidazolate surroundings of the metal ions. The framework can be obtained by a solvent-free in situ approach starting from barium metal, europium metal, and a melt of imidazole in a redox reaction. Better homogeneity for the distribution of the luminescence centers was achieved by utilizing the hydrides BaH2 and EuH2 instead of the metals.
Journal of the American Chemical Society | 2009
Martin Zeuner; Sandro Pagano; Philipp R. Matthes; Daniel Bichler; Dirk Johrendt; Thomas Harmening; Rainer Pöttgen; Wolfgang Schnick
The mixed valence europium nitridosilicate Eu(2)SiN(3) has been synthesized at 900 degrees C in welded tantalum ampules starting from europium and silicon diimide Si(NH)(2) in a lithium flux. The structure of the black material has been determined by single-crystal X-ray diffraction analysis (Cmca (no. 64), a = 542.3(11) pm, b = 1061.0(2) pm, c = 1162.9(2) pm, Z = 8, 767 independent reflections, 37 parameters, R1 = 0.017, wR2 = 0.032). Eu(2)SiN(3) is a chain-type silicate comprising one-dimensional infinite nonbranched zweier chains of corner-sharing SiN(4) tetrahedra running parallel [100] with a maximum stretching factor f(s) = 1.0. The compound is isostructural with Ca(2)PN(3) and Rb(2)TiO(3), and it represents the first example of a nonbranched chain silicate in the class of nitridosilicates. There are two crystallographically distinct europium sites (at two different Wyckoff positions 8f) being occupied with Eu(2+) and Eu(3+), respectively. (151)Eu Mössbauer spectroscopy of Eu(2)SiN(3) differentiates unequivocally these two europium atoms and confirms their equiatomic multiplicity, showing static mixed valence with a constant ratio of the Eu(2+) and Eu(3+) signals over the whole temperature range. The Eu(2+) site shows magnetic hyperfine field splitting at 4.2 K. Magnetic susceptibility measurements exhibit Curie-Weiss behavior above 24 K with an effective magnetic moment of 7.5 mu(B)/f.u. and a small contribution of Eu(3+), in accordance with Eu(2+) and Eu(3+) in equiatomic ratio. Ferromagnetic ordering at unusually high temperature is detected at T(C) = 24 K. DFT calculations of Eu(2)SiN(3) reveal a band gap of approximately 0.2 eV, which is in agreement with the black color of the compound. Both DFT calculations and lattice energetic calculations (MAPLE) corroborate the assignment of two crystallographically independent Eu sites to Eu(2+) and Eu(3+).
Journal of Materials Chemistry C | 2015
Suvendu Sekhar Mondal; Karsten Behrens; Philipp R. Matthes; Fabian Schönfeld; Jörn Nitsch; Andreas Steffen; Philipp-Alexander Primus; Michael U. Kumke; Klaus Müller-Buschbaum; Hans-Jürgen Holdt
Co-doping of the MOF 3∞[Zn(2-methylimidazolate-4-amide-5-imidate)] (IFP-1 = Imidazolate Framework Potsdam-1) with luminescent Eu3+ and Tb3+ ions presents an approach to utilize the porosity of the MOF for the intercalation of luminescence centers and for tuning of the chromaticity to the emission of white light of the quality of a three color emitter. Organic based fluorescence processes of the MOF backbone as well as metal based luminescence of the dopants are combined to one homogenous single source emitter while retaining the MOFs porosity. The lanthanide ions Eu3+ and Tb3+ were doped in situ into IFP-1 upon formation of the MOF by intercalation into the micropores of the growing framework without a structure directing effect. Furthermore, the color point is temperature sensitive, so that a cold white light with a higher blue content is observed at 77 K and a warmer white light at room temperature (RT) due to the reduction of the organic emission at higher temperatures. The study further illustrates the dependence of the amount of luminescent ions on porosity and sorption properties of the MOF and proves the intercalation of luminescence centers into the pore system by low-temperature site selective photoluminescence spectroscopy, SEM and EDX. It also covers an investigation of the border of homogenous uptake within the MOF pores and the formation of secondary phases of lanthanide formates on the surface of the MOF. Crossing the border from a homogenous co-doping to a two-phase composite system can be beneficially used to adjust the character and warmth of the white light. This study also describes two-color emitters of the formula Ln@IFP-1a–d (Ln: Eu, Tb) by doping with just one lanthanide Eu3+ or Tb3+.
Pharmaceutical Research | 2015
Anja Balk; Toni Widmer; Johannes Wiest; Heike Bruhn; Jens-Christoph Rybak; Philipp R. Matthes; Klaus Müller-Buschbaum; Anastasios Sakalis; Tessa Lühmann; Jörg Berghausen; Ulrike Holzgrabe; Bruno Galli; Lorenz Meinel
AbstractPurposeA poorly water soluble acidic active pharmaceutical ingredient (API) was transformed into an ionic liquid (IL) aiming at faster and higher oral availability in comparison to a prodrug.MethodsAPI preparations were characterized in solid state by single crystal and powder diffraction, NMR, DSC, IR and in solution by NMR and ESI-MS. Dissolution and precipitation kinetics were detailed as was the role of the counterion on API supersaturation. Transepithelial API transport through Caco-2 monolayers and counterion cytotoxicity were assessed.ResultsThe mechanism leading to a 700 fold faster dissolution rate and longer duration of API supersaturation of the ionic liquid in comparison to the free acid was deciphered. Transepithelial transport was about three times higher for the IL in comparison to the prodrug when substances were applied as suspensions with the higher solubility of the IL outpacing the higher permeability of the prodrug. The counterion was nontoxic with IC50 values in the upper μM / lower mM range in cell lines of hepatic and renal origin as well as in macrophages.ConclusionThe IL approach was instrumental for tuning physico-chemical API properties, while avoiding the inherent need for structural changes as required for prodrugs. Graphical AbstractStabilization of API in solution by Ionic liquid formation
Inorganic Chemistry | 2016
Nicole Dannenbauer; Philipp R. Matthes; Thomas P. Scheller; Jörn Nitsch; Sven H. Zottnick; Markus S. Gernert; Andreas Steffen; Christoph Lambert; Klaus Müller-Buschbaum
A series of 12 lanthanide coordination polymers was synthesized from anhydrous LnCl3 and 1,2-di(4-pyridyl)ethylene (dpe) under solvothermal conditions in either thiazole (thz) or pyridine (py). The reactions yielded ∞1[Ln2Cl6(dpe)2(thz)4]·dpe with Ln = Ce (1), Nd (2), ∞1[LnCl3 (dpe)(py)2]·(dpe/py) with Ln = Gd (3), Er (4), and ∞1[LnCl3(dpe) (thz)2](dpe/thz) with Ln = Sm (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), as well as ∞1[HoCl3(dpe)(thz)2]·thz (11) and ∞2[La2Cl6(dpe)3(py)2]·dpe (12). One-dimensional coordination polymers (CPs) and a two-dimensional network of five different constitutions are formed by connection of LnCl3 units via dpe molecules. As free ligand, dpe shows an excimer effect that is reduced in the coordination polymers. In addition, dipyridylethylene proves to be a suitable sensitizer for the photoluminescence of lanthanides in the near-infrared region (NIR) only. Thereby, dpe differs from the related ligand 1,2-di(4-pyridyl)ethane. For the compounds presented, four different luminesc...
Chemistry: A European Journal | 2016
Suvendu Sekhar Mondal; Asamanjoy Bhunia; Ahmed G. Attallah; Philipp R. Matthes; Alexandra Kelling; Uwe Schilde; Klaus Müller-Buschbaum; R. Krause-Rehberg; Christoph Janiak; Hans-Jürgen Holdt
An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52 nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N2 , H2 , and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III) =Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 (λexc =365 nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4 f emissions.
Molecules | 2015
Philipp R. Matthes; Fabian Schönfeld; Sven H. Zottnick; Klaus Müller-Buschbaum
The reaction of anhydrous lanthanide chlorides together with 4,4′-bipyridine yields the MOFs ∞2[Ln2Cl6(bipy)3]·2bipy, with Ln = Pr − Yb, bipy = 4,4′-bipyridine, and ∞3[La2Cl6(bipy)5]·4bipy. Post-synthetic thermal treatment in combination with different vacuum conditions was successfully used to shape the porosity of the MOFs. In addition to the MOFs microporosity, a tuneable mesoporosity can be implemented depending on the treatment conditions as a surface morphological modification. Furthermore, thermal treatment without vacuum results in several identifiable crystalline high-temperature phases. Instead of collapse of the frameworks upon heating, further aggregation under release of bipy is observed. ∞3[LaCl3(bipy)] and ∞2[Ln3Cl9(bipy)3], with Ln = La, Pr, Sm, and ∞1[Ho2Cl6(bipy)2] were identified and characterized, which can also exhibit luminescence. Besides being released upon heating, the linker 4,4′-bipyridine can undergo activation of C-C bonding in ortho-position leading to the in-situ formation of 4,4′:2′,2′′:4′′,4′′′-quaterpyridine (qtpy). qtpy can thereby function as linker itself, as shown for the formation of the network ∞2[Gd2Cl6(qtpy)2(bipy)2]·bipy. Altogether, the manuscript elaborates the influence of thermal treatment beyond the usual activation procedures reported for MOFs.
Chemistry: A European Journal | 2013
Philipp R. Matthes; Jörn Nitsch; Ana Kuzmanoski; Claus Feldmann; Andreas Steffen; Todd B. Marder; Klaus Müller-Buschbaum
European Journal of Inorganic Chemistry | 2012
Christoph J. Höller; Philipp R. Matthes; Matthias Adlung; Claudia Wickleder; Klaus Müller-Buschbaum