Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Starkl is active.

Publication


Featured researches published by Philipp Starkl.


Cell Metabolism | 2012

The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.

Arvand Haschemi; Paul Kosma; Lars Gille; Charles R. Evans; Charles F. Burant; Philipp Starkl; Bernhard Knapp; Robert Haas; Johannes A. Schmid; Christoph Jandl; Shahzada Amir; Gert Lubec; Jaehong Park; Harald Esterbauer; Martin Bilban; Leonardo Brizuela; J. Andrew Pospisilik; Leo E. Otterbein; Oswald Wagner

Summary Immune cells are somewhat unique in that activation responses can alter quantitative phenotypes upwards of 100,000-fold. To date little is known about the metabolic adaptations necessary to mount such dramatic phenotypic shifts. Screening for novel regulators of macrophage activation, we found nonprotein kinases of glucose metabolism among the most enriched classes of candidate immune modulators. We find that one of these, the carbohydrate kinase-like protein CARKL, is rapidly downregulated in vitro and in vivo upon LPS stimulation in both mice and humans. Interestingly, CARKL catalyzes an orphan reaction in the pentose phosphate pathway, refocusing cellular metabolism to a high-redox state upon physiological or artificial downregulation. We find that CARKL-dependent metabolic reprogramming is required for proper M1- and M2-like macrophage polarization and uncover a rate-limiting requirement for appropriate glucose flux in macrophage polarization.


Immunity | 2013

A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom

Thomas Marichal; Philipp Starkl; Laurent L. Reber; Janet Kalesnikoff; Hans C. Oettgen; Mindy Tsai; Martin Metz; Stephen J. Galli

Allergies are widely considered to be misdirected type 2 immune responses, in which immunoglobulin E (IgE) antibodies are produced against any of a broad range of seemingly harmless antigens. However, components of insect venoms also can sensitize individuals to develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. We found that mice injected with amounts of honeybee venom similar to that which could be delivered in one or two stings developed a specific type 2 immune response that increased their resistance to subsequent challenge with potentially lethal amounts of the venom. Our data indicate that IgE antibodies and the high affinity IgE receptor, FcεRI, were essential for such acquired resistance to honeybee venom. The evidence that IgE-dependent immune responses against venom can enhance survival in mice supports the hypothesis that IgE, which also contributes to allergic disorders, has an important function in protection of the host against noxious substances.


Journal of Clinical Investigation | 2016

Different activation signals induce distinct mast cell degranulation strategies

Nicolas Gaudenzio; Riccardo Sibilano; Thomas Marichal; Philipp Starkl; Laurent L. Reber; Nicolas Cenac; Benjamin McNeil; Xinzhong Dong; Joseph D. Hernandez; Ronit Sagi-Eisenberg; Ilan Hammel; Axel Roers; Salvatore Valitutti; Mindy Tsai; Eric Espinosa; Stephen J. Galli

Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P-dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation.


Laboratory Investigation | 2012

Evidence questioning cromolyn's effectiveness and selectivity as a 'mast cell stabilizer' in mice.

Tatsuya Oka; Janet Kalesnikoff; Philipp Starkl; Mindy Tsai; Stephen J. Galli

Cromolyn, widely characterized as a ‘mast cell stabilizer’, has been used in mice to investigate the biological roles of mast cells in vivo. However, it is not clear to what extent cromolyn can either limit the function of mouse mast cells or influence biological processes in mice independently of effects on mast cells. We confirmed that cromolyn (at 10 mg/kg in vivo or 10–100 μM in vitro) can inhibit IgE-dependent mast cell activation in rats in vivo (measuring Evans blue extravasation in passive cutaneous anaphylaxis (PCA) and increases in plasma histamine in passive systemic anaphylaxis (PSA)) and in vitro (measuring peritoneal mast cell (PMC) β-hexosaminidase release and prostaglandin D2 synthesis). However, under the conditions tested, cromolyn did not inhibit those mast cell-dependent responses in mice. In mice, cromolyn also failed to inhibit the ear swelling or leukocyte infiltration at sites of PCA. Nor did cromolyn inhibit IgE-independent degranulation of mouse PMCs induced by various stimulators in vitro. At 100 mg/kg, a concentration 10 times higher than that which inhibited PSA in rats, cromolyn significantly inhibited the increases in plasma concentrations of mouse mast cell protease-1 (but not of histamine) during PSA, but had no effect on the reduction in body temperature in this setting. Moreover, this concentration of cromolyn (100 mg/kg) also inhibited LPS-induced TNF production in genetically mast cell-deficient C57BL/6-KitW-sh/W-sh mice in vivo. These results question cromolyn’s effectiveness and selectivity as an inhibitor of mast cell activation and mediator release in the mouse.


Journal of Clinical Investigation | 2016

Lung-resident eosinophils represent a distinct regulatory eosinophil subset.

Claire Mesnil; Stéfanie Raulier; Geneviève Paulissen; Xue Xiao; Mark A. Birrell; Dimitri Pirottin; Thibaut Janss; Philipp Starkl; Eve Ramery; Monique Henket; FLorence Schleich; Marc Radermecker; Kris Thielemans; Laurent Gillet; Marc Thiry; Maria G. Belvisi; Renaud Louis; Christophe Desmet; Thomas Marichal; Fabrice Bureau

Increases in eosinophil numbers are associated with infection and allergic diseases, including asthma, but there is also evidence that eosinophils contribute to homeostatic immune processes. In mice, the normal lung contains resident eosinophils (rEos), but their function has not been characterized. Here, we have reported that steady-state pulmonary rEos are IL-5-independent parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped nucleus. During house dust mite-induced airway allergy, rEos features remained unchanged, and rEos were accompanied by recruited inflammatory eosinophils (iEos), which were defined as IL-5-dependent peribronchial Siglec-FhiCD62L-CD101hi cells with a segmented nucleus. Gene expression analyses revealed a more regulatory profile for rEos than for iEos, and correspondingly, mice lacking lung rEos showed an increase in Th2 cell responses to inhaled allergens. Such elevation of Th2 responses was linked to the ability of rEos, but not iEos, to inhibit the maturation, and therefore the pro-Th2 function, of allergen-loaded DCs. Finally, we determined that the parenchymal rEos found in nonasthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) were phenotypically distinct from the iEos isolated from the sputa of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi cells), suggesting that our findings in mice are relevant to humans. In conclusion, our data define lung rEos as a distinct eosinophil subset with key homeostatic functions.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response in BALB/c mice

Isabella Pali-Schöll; Helen Szöllösi; Philipp Starkl; Bernhard Scheicher; Caroline Stremnitzer; Alexander Hofmeister; Franziska Roth-Walter; Anna Lukschal; Susanne C. Diesner; Andreas Zimmer; Erika Jensen-Jarolim

The currently applied immunotherapy of type I allergy with aluminum hydroxide (alum) as adjuvant elicits - among other side effects - an initial IgE-boost. In contrast, CpG-oligodeoxynucleotides (ODNs) drive the immune response toward Th1. The biodegradable material protamine can spontaneously form nanoparticles together with such ODNs. Our aim was to investigate the immune response induced by protamine-based nanoparticles (proticles) with CpG-ODN as an allergen delivery system. Proticles complexed with Ara h 2 extracted from raw peanuts as model allergen were injected subcutaneously into naïve BALB/c mice. Ara h 2-specific antibodies were analyzed by ELISA and rat basophilic leukemia (RBL) cell assay. Cytokine levels were investigated in supernatants of stimulated splenocytes. The in vivo distribution after subcutaneous injection was examined via fluorescence imaging. BMDCs were stimulated with proticles, and expression of stimulation and maturation markers as well as cytokines in supernatants was investigated. A favorable increase in Ara h 2-specific IgG2a antibodies was found after immunization with proticles-Ara h 2, whereas Ara h 2-specific IgE was not detectable. Accordingly, the ratio of IL-5/IFN-gamma was low in this group. Granuloma formation was completely absent at injection sites of proticles. The distribution of Ara h 2 after subcutaneous injection was markedly decelerated when complexed to proticles. Stimulation of BMDCs with proticles-Ara h 2 caused upregulation of CD11c and CD80 as well as an increased IL-6 production. Our data suggest that biodegradable protamine-based nanoparticles with CpG-ODN counteract the Th2-dominated immune response induced by an allergen and therefore are suitable as novel carrier system for immunotherapy of allergy.


PLOS ONE | 2010

Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy

Eva Untersmayr; Susanne C. Diesner; Gertie J. Oostingh; Kathrin Selzle; Tobias Pfaller; Cornelia Schultz; Yingyi Zhang; Durga Krishnamurthy; Philipp Starkl; Regina Knittelfelder; Elisabeth Förster-Waldl; Arnold Pollak; Otto Scheiner; Ulrich Pöschl; Erika Jensen-Jarolim; Albert Duschl

Background Nitration of proteins on tyrosine residues, which can occur due to polluted air under “summer smog” conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route. Methodology/Principal Findings BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y107) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization. Conclusions/Significance These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes.


Cell Reports | 2017

First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment

Simona Saluzzo; Anna-Dorothea Gorki; Batika M.J. Rana; Rui Martins; Seth T. Scanlon; Philipp Starkl; Karin Lakovits; Anastasiya Hladik; Ana Korosec; Omar Sharif; Joanna Warszawska; Helen E. Jolin; Ildiko Mesteri; Andrew N. J. McKenzie; Sylvia Knapp

Summary From birth onward, the lungs are exposed to the external environment and therefore harbor a complex immunological milieu to protect this organ from damage and infection. We investigated the homeostatic role of the epithelium-derived alarmin interleukin-33 (IL-33) in newborn mice and discovered the immediate upregulation of IL-33 from the first day of life, closely followed by a wave of IL-13-producing type 2 innate lymphoid cells (ILC2s), which coincided with the appearance of alveolar macrophages (AMs) and their early polarization to an IL-13-dependent anti-inflammatory M2 phenotype. ILC2s contributed to lung quiescence in homeostasis by polarizing tissue resident AMs and induced an M2 phenotype in transplanted macrophage progenitors. ILC2s continued to maintain the M2 AM phenotype during adult life at the cost of a delayed response to Streptococcus pneumoniae infection in mice. These data highlight the homeostatic role of ILC2s in setting the activation threshold in the lung and underline their implications in anti-bacterial defenses.


Seminars in Immunopathology | 2016

IgE and mast cells in host defense against parasites and venoms

Kaori Mukai; Mindy Tsai; Philipp Starkl; Thomas Marichal; Stephen J. Galli

IgE-dependent mast cell activation is a major effector mechanism underlying the pathology associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise innocuous antigens, such as those contained in certain foods and medicines. Why would such a highly “maladaptive” immune response develop in evolution and be retained to the present day? Host defense against parasites has long been considered the only beneficial function that might be conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition to participating in host resistance to certain parasites, mast cells and IgE are critical components of innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host defense against the toxicity of certain arthropod and animal venoms, including enhancing the survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus detrimental innate and adaptive immune responses associated with mast cell activation and IgE is likely to enhance our ability to identify potential therapeutic targets in such settings, not only for reducing the pathology associated with allergic disorders but perhaps also for enhancing immune protection against pathogens and animal venoms.


PLOS ONE | 2010

The High Affinity IgE Receptor FcεRI Is Expressed by Human Intestinal Epithelial Cells

Eva Untersmayr; Giovanna Bises; Philipp Starkl; Charles L. Bevins; Otto Scheiner; George Boltz-Nitulescu; Fritz Wrba; Erika Jensen-Jarolim

BACKGROUND IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor Fc epsilonRI in human intestinal epithelium. METHODOLOGY/PRINCIPAL FINDINGS Fc epsilonRI alpha-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The Fc epsilonRIalpha positive epithelial cells co-expressed Fc epsilonRIgamma, whereas with one exception, none of the samples was positive for the beta-chain in the epithelial layer. The functionality of Fc epsilonRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the alpha- and gamma-chains of Fc epsilonRI and to bind IgE, whereas confluent cells were negative for gamma-chains. CONCLUSIONS/SIGNIFICANCE Our data provide the first evidence that the components of a functional Fc epsilonRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of Fc epsilonRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested.

Collaboration


Dive into the Philipp Starkl's collaboration.

Top Co-Authors

Avatar

Stephen J. Galli

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Jensen-Jarolim

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franziska Roth-Walter

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Eva Untersmayr

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Isabella Pali-Schöll

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge