Philippa L. Kohnke
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippa L. Kohnke.
Journal of Proteomics | 2013
Xavier Druart; J.P. Rickard; Swetlana Mactier; Philippa L. Kohnke; C.M. Kershaw-Young; R. Bathgate; Z. Gibb; Ben Crossett; Guillaume Tsikis; Valérie Labas; Grégoire Harichaux; C. G. Grupen; S.P. de Graaf
UNLABELLED Seminal plasma contains a large protein component which has been implicated in the function, transit and survival of spermatozoa within the female reproductive tract. However, the identity of the majority of these proteins remains unknown and a direct comparison between the major domestic mammalian species has yet to be made. As such, the present study characterized and compared the seminal plasma proteomes of cattle, horse, sheep, pig, goat, camel and alpaca. GeLC-MS/MS and shotgun proteomic analysis by 2D-LC-MS/MS identified a total of 302 proteins in the seminal plasma of the chosen mammalian species. Nucleobindin 1 and RSVP14, a member of the BSP (binder of sperm protein) family, were identified in all species. Beta nerve growth factor (bNGF), previously identified as an ovulation inducing factor in alpacas and llamas, was identified in this study in alpaca and camel (induced ovulators), cattle, sheep and horse (spontaneous ovulators) seminal plasma. These findings indicate that while the mammalian species studied have common ancestry as ungulates, their seminal plasma is divergent in protein composition, which may explain variation in reproductive capacity and function. The identification of major specific proteins within seminal plasma facilitates future investigation of the role of each protein in mammalian reproduction. BIOLOGICAL SIGNIFICANCE This proteomic study is the first study to compare the protein composition of seminal plasma from seven mammalian species including two camelid species. Beta nerve growth factor, previously described as the ovulation inducing factor in camelids is shown to be the major protein in alpaca and camel seminal plasma and also present in small amounts in bull, ram, and horse seminal plasma.
Journal of Proteomics | 2014
Clement Soleilhavoup; Guillaume Tsikis; Valérie Labas; Grégoire Harichaux; Philippa L. Kohnke; J.L. Dacheux; Y. Guérin; J.L. Gatti; S.P. de Graaf; Xavier Druart
UNLABELLED Seminal plasma is composed of secretions from the epididymis and the accessory sex glands and plays a critical role in the fertilising ability of spermatozoa. In rams, analysis of seminal plasma by GeLC-MS/MS has allowed the identification of more than 700 proteins, including a high abundance of Binder of Sperm family proteins (BSP1, BSP5, SPADH1, SPADH2), the spermadhesin family (bodhesin2), lactoferrin and newly identified proteins like UPF0762 (C6orf58 gene). When spermatogenesis was stopped by scrotal insulation, changes in the proteome profile revealed the sperm origin of 40 seminal proteins, such as glycolysis pathway enzymes, the chaperonin containing TCP1 (CCT) complex and the 26S proteasome complex. Sperm mobility after liquid preservation (24h in milk at 15°C) is male dependent and can be correlated to differences in the seminal plasma proteome, detected by spectral counting. The negative association of zinc alpha-2 glycoprotein (ZAG) with semen preservation was confirmed by the use of recombinant human ZAG, which induced an increase in mobility of fresh sperm, but then decreased sperm mobility after 24h of incubation. Several sperm membrane proteins interacting with the cytoskeleton, glycolysis enzymes and sperm-associated proteins involved in capacitation correlated with better liquid storage and can be considered as seminal biomarkers of sperm preservation. BIOLOGICAL SIGNIFICANCE Extensive analysis of the ram seminal plasma proteome reveals a complex and diverse protein composition. This composition varies between males with different sperm preservation abilities. Several proteins were shown to originate from the spermatozoa and positively correlate with sperm liquid preservation, indicating that these proteins can be traced as sperm biomarkers within the seminal plasma. The zinc alpha-2 glycoprotein (ZAG) was found to have a biphasic effect on sperm mobility, with a short-term stimulation followed by a long-term exhaustion of sperm mobility after a 24h preservation period.
Molecular & Cellular Proteomics | 2016
Clement Soleilhavoup; Cindy Riou; Guillaume Tsikis; Valérie Labas; Grégoire Harichaux; Philippa L. Kohnke; Karine Reynaud; Simon P. de Graaf; Nadine Gérard; Xavier Druart
The female genital tract includes several anatomical regions whose luminal fluids successively interact with gametes and embryos and are involved in the fertilisation and development processes. The luminal fluids from the inner cervix, the uterus and the oviduct were collected along the oestrous cycle at oestrus (Day 0 of the cycle) and during the luteal phase (Day 10) from adult cyclic ewes. The proteomes were assessed by GeLC-MS/MS and quantified by spectral counting. A set of 940 proteins were identified including 291 proteins differentially present along the cycle in one or several regions. The global analysis of the fluid proteomes revealed a general pattern of endocrine regulation of the tract, with the cervix and the oviduct showing an increased differential proteins abundance mainly at oestrus while the uterus showed an increased abundance mainly during the luteal phase. The proteins more abundant at oestrus included several families such as the heat shock proteins (HSP), the mucins, the complement cascade proteins and several redox enzymes. Other proteins known for their interaction with gametes such as oviductin (OVGP), osteopontin, HSPA8, and the spermadhesin AWN were also overexpressed at oestrus. The proteins more abundant during the luteal phase were associated with the immune system such as ceruloplasmin, lactoferrin, DMBT1, or PIGR, and also with tissue remodeling such as galectin 3 binding protein, alkaline phosphatase, CD9, or fibulin. Several proteins differentially abundant between estrus and the luteal phase, such as myosin 9 and fibronectin, were also validated by immunohistochemistry. The potential roles in sperm transit and uterine receptivity of the proteins differentially regulated along the cycle in the female genital tract are discussed.
Pigment Cell & Melanoma Research | 2014
Swetlana Mactier; Kimberley L. Kaufman; Penghao Wang; Ben Crossett; Gulietta M. Pupo; Philippa L. Kohnke; John F. Thompson; Richard A. Scolyer; Jean Y. Yang; Graham J. Mann; Richard I. Christopherson
Outcomes for melanoma patients with stage III disease differ widely even within the same subcategory. Molecular signatures that more accurately predict prognosis are needed to stratify patients according to risk. Proteomic analyses were used to identify differentially abundant proteins in extracts of surgically excised samples from patients with stage IIIc melanoma lymph node metastases. Analysis of samples from patients with poor (n = 14, <1 yr) and good (n = 19, >4 yr) survival outcomes identified 84 proteins that were differentially abundant between prognostic groups. Subsequent selected reaction monitoring analysis verified 21 proteins as potential biomarkers for survival. Poor prognosis patients are characterized by increased levels of proteins involved in protein metabolism, nucleic acid metabolism, angiogenesis, deregulation of cellular energetics and methylation processes, and decreased levels of proteins involved in apoptosis and immune response. These proteins are able to classify stage IIIc patients into prognostic subgroups (P < 0.02). This is the first report of potential prognostic markers from stage III melanoma using proteomic analyses. Validation of these protein markers in larger patient cohorts should define protein signatures that enable better stratification of stage III melanoma patients.
Journal of Proteome Research | 2011
Swetlana Mactier; Silke Henrich; Yiping Che; Philippa L. Kohnke; Richard I. Christopherson
Cladribine (CdA) and fludarabine (FdAMP) are purine analogs that induce apoptosis in chronic lymphocytic leukemia and non-Hodgkins lymphoma, but the mechanisms are undefined. The effects of CdA and fludarabine nucleoside (FdA) on the cytosolic, mitochondrial, and nuclear proteomes in human Raji lymphoma cells have been determined using two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry. Differentially abundant proteins have provided new insights into CdA- and FdA-induced apoptosis. Treatment with these purine analogs induced changes in proteins involved with intermediary metabolism, cell growth, signal transduction, protein metabolism, and regulation of nucleic acids. Differentially abundant mitochondrial 39S ribosomal protein L50, mTERF domain-containing protein 1, Chitinase-3 like 2 protein, and ubiquinone biosynthesis protein COQ9 have been identified in cells undergoing apoptosis. Up-regulation of several stress-associated proteins found in the endoplasmic reticulum (ER) including GRP78, ERp57, and ORP150 suggests that purine analog-induced apoptosis may result from ER stress and unfolded protein response. While mitochondria-dependent apoptosis has been associated with purine analog cytotoxicity, the likely involvement of the ER stress pathway in CdA- and FdA-induced apoptosis has been shown here for the first time.
Nucleosides, Nucleotides & Nucleic Acids | 2014
Richard I. Christopherson; Swetlana Mactier; Juhura G. Almazi; Philippa L. Kohnke; O. Giles Best; Stephen P. Mulligan
Fludarabine (2-FaraAMP) is a purine analog that is effective against chronic lymphocytic leukemia (CLL) and non-Hodgkins lymphoma (NHL). For some cases of CLL, 2-FaraAMP as a single agent can clear the blood of leukemia cells, but leukemia stem cells usually remain protected in sanctuary sites. It is clear that 2-FaraAMP has multiple mechanisms of action that may collectively result in strand breaks in DNA, accumulation of phosphorylated p53 and apoptosis. We have demonstrated using the human Burkitts lymphoma B-cell line, Raji, that p53, p63 and p73 all accumulate in the nucleus, following treatment of cells with fludarabine nucleoside (2-FaraA). In addition, phosphorylated p53 accumulates in the cytosol and at mitochondria. Using sophisticated methods of proteomic analysis with mass spectrometry, proteins that become differentially abundant after treatment of cells with 2-FaraA have been identified, providing considerable additional information about the cellular responses of B-lymphoid cancers to this purine analog. The levels of proteins involved in the unfolded protein response increase, indicating that endoplasmic reticulum stress is likely to be one mechanism for induction of apoptosis. The levels of a number of proteins found on the outer plasma membrane change on cells treated with 2-FaraA, suggesting that signaling from the B-cell antigen receptor (BCR) is stimulated, resulting in induction of apoptosis through the intrinsic pathway. Increased levels of the cell surface proteins, CD50, CD100 and ECE-1, would promote survival of these cells; the balance between these survival and death responses would determine the fate of the cell.
Current Opinion in Molecular Therapeutics | 2009
Philippa L. Kohnke; Stephen P. Mulligan; Richard I. Christopherson
Physical Review E | 2015
Adama Creppy; Olivier Praud; Xavier Druart; Philippa L. Kohnke; Franck Plouraboué
Journal of Proteome Research | 2012
Philippa L. Kohnke; Swetlana Mactier; Juhura G. Almazi; Ben Crossett; Richard I. Christopherson
Journal of Pharmacy and Pharmaceutical Sciences | 2013
Pauline Yu-Hsiu Huang; Philippa L. Kohnke; Larissa Belov; Giles Best; Stephen P. Mulligan; Richard I. Christopherson