Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe A. Parone is active.

Publication


Featured researches published by Philippe A. Parone.


Journal of Cell Biology | 2002

Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli

Damien Arnoult; Philippe A. Parone; Jean-Claude Martinou; Bruno Antonsson; Jérôme Estaquier; Jean Claude Ameisen

Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.


PLOS ONE | 2008

Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA

Philippe A. Parone; Sandrine Da Cruz; Daniel Tondera; Yves Mattenberger; Dominic James; Pierre Maechler; François Barja; Jean-Claude Martinou

Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.


Molecular and Cellular Biology | 2006

Inhibiting the Mitochondrial Fission Machinery Does Not Prevent Bax/Bak-Dependent Apoptosis

Philippe A. Parone; Dominic James; Sandrine Da Cruz; Yves Mattenberger; Olivier Donzé; François Barja; Jean-Claude Martinou

ABSTRACT Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43

Eveline S. Arnold; Shuo-Chien Ling; Stephanie C. Huelga; Clotilde Lagier-Tourenne; Magdalini Polymenidou; Dara Ditsworth; Holly Kordasiewicz; Melissa McAlonis-Downes; Oleksandr Platoshyn; Philippe A. Parone; Sandrine Da Cruz; Kevin M. Clutario; Debbie Swing; Lino Tessarollo; Martin Marsala; Christopher Shaw; Gene W. Yeo; Don W. Cleveland

Significance Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice and genome-wide RNA splicing analyses, mutant TDP-43 is shown to retain normal or enhanced activity for facilitating splicing of some RNA targets, but “loss-of-function” for others. These splicing changes, as well as age-dependent, mutant-dependent lower motor neuron disease, occur without loss of nuclear TDP-43 or accumulation of insoluble aggregates of TDP-43. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43Q331K and TDP-43M337V), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43Q331K, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.


Biochimie | 2002

Mitochondria: regulating the inevitable

Philippe A. Parone; Dominic James; Jean-Claude Martinou

Apoptosis is a form of programmed cell death important in the development and tissue homeostasis of multicellular organisms. Abnormalities in cell death control can lead to a variety of diseases, including cancer and degenerative disorders. Hence, the process of apoptosis is tightly regulated through multiple independent signalling pathways that are initiated either from triggering events within the cell or at the cell surface. In recent years, mitochondria have emerged as the central components of such apoptotic signalling pathways and are now known to control apoptosis through the release of apoptogenic proteins. In this review we aim to give an overview of the role of the mitochondria during apoptosis and the molecular mechanisms involved.


The Journal of Neuroscience | 2013

Enhancing Mitochondrial Calcium Buffering Capacity Reduces Aggregation of Misfolded SOD1 and Motor Neuron Cell Death without Extending Survival in Mouse Models of Inherited Amyotrophic Lateral Sclerosis

Philippe A. Parone; Sandrine Da Cruz; Joo Seok Han; Melissa McAlonis-Downes; Anne P. Vetto; Sandra K. Lee; Eva Tseng; Don W. Cleveland

Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca2+) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca2+-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca2+-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca2+ content. A chronic increase in mitochondrial buffering of Ca2+ in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca2+ buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.


Biochimica et Biophysica Acta | 2008

SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability

Sandrine Da Cruz; Philippe A. Parone; Philippe Gonzalo; Willy V. Bienvenut; Daniel Tondera; Alexis A. Jourdain; Manfredo Quadroni; Jean-Claude Martinou

Stomatin is a member of a large family of proteins including prohibitins, HflK/C, flotillins, mechanoreceptors and plant defense proteins, that are thought to play a role in protein turnover. Using different proteomic approaches, we and others have identified SLP-2, a member of the stomatin gene family, as a component of the mitochondria. In this study, we show that SLP-2 is strongly associated with the mitochondrial inner membrane and that it interacts with prohibitins. Depleting HeLa cells of SLP-2 lead to increased proteolysis of prohibitins and of subunits of the respiratory chain complexes I and IV. Further supporting the role of SLP-2 in regulating the stability of specific mitochondrial proteins, we found that SLP-2 is up-regulated under conditions of mitochondrial stress leading to increased protein turnover. These data indicate that SLP-2 plays a role in regulating the stability of mitochondrial proteins including prohibitins and subunits of respiratory chain complexes.


Expert Review of Proteomics | 2005

Building the mitochondrial proteome.

Sandrine Da Cruz; Philippe A. Parone; Jean-Claude Martinou

Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis.


Journal of Biological Chemistry | 2013

Fused in Sarcoma (FUS) Protein Lacking Nuclear Localization Signal (NLS) and Major RNA Binding Motifs Triggers Proteinopathy and Severe Motor Phenotype in Transgenic Mice

Tatyana Shelkovnikova; Owen M. Peters; Alexey V. Deykin; Natalie Connor-Robson; Hannah K. Robinson; A. A. Ustyugov; S. O. Bachurin; Tatyana G. Ermolkevich; Igor L. Goldman; Elena R. Sadchikova; Kovrazhkina Ea; Veronica I. Skvortsova; Shuo-Chien Ling; Sandrine Da Cruz; Philippe A. Parone; Vladimir L. Buchman; Natalia Ninkina

Background: FUS inclusions are hallmarks of certain neurodegenerative diseases. Results: Expression of a highly aggregate prone FUS variant in transgenic mice causes proteinopathy and severe motor phenotype. Conclusion: Aggregation of FUS is sufficient to recapitulate motor pathology typical for amyotrophic lateral sclerosis. Significance: Understanding the role of protein aggregation in the development of human neurodegenerative diseases is crucial for designing efficient therapeutic approaches. Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.


Cell Calcium | 2010

SLP-2 negatively modulates mitochondrial sodium-calcium exchange

Sandrine Da Cruz; Umberto De Marchi; Maud Frieden; Philippe A. Parone; Jean-Claude Martinou; Nicolas Demaurex

Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals.

Collaboration


Dive into the Philippe A. Parone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic James

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra K. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic James

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge