Philippe Benilan
University of Franche-Comté
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Benilan.
Applied Mathematics and Optimization | 1988
Philippe Benilan; Michael G. Crandall; Paul Sacks
In this paper we study questions of existence, uniqueness, and continuous dependence for semilinear elliptic equations with nonlinear boundary conditions. In particular, we obtain results concerning the continuous dependence of the solutions on the nonlinearities in the problem, which in turn implies analogous results for a related parabolic problem. Such questions arise naturally in the study of potential theory, flow through porous media, and obstacle problems.
Archive | 1999
Wolfgang Arendt; Philippe Benilan
Let Ω ⊂ ℝ N be open. It is shown that the Dirichlet Laplacian generates a (holomorphic) C o-semigroup on C o(Ω) if and only if Ω is regular in the sense of Wiener. The same result remains true for elliptic operators in divergence form.
Transactions of the American Mathematical Society | 1987
Philippe Benilan; Juan Luis Vázquez
Abstract : The flow of a gas through a porous medium is governed by a degenerate quasilinear parabolic equation. It is known that the nonnegative solutions to this equation possess a lower bound for the second derivative of the pressure in the spatial variables. This bound plays an important role in the mathematical treatment and is related to the entropy of the flow. Since the solutions exhibit interfaces across which v sub x jumps positively, no upper bound is possible globally for v subxx. Nevertheless it is proven that the concavity of v(.,t) in the region where v is positive is preserved in time. This is in itself an interesting geometric property of the solution. It also allows one to obtain precise information about the asymptotic behaviour of the flow.
Annales De L Institut Henri Poincare-analyse Non Lineaire | 1995
Philippe Benilan; Hamidou Touré
Resume Nous etudions dans cet article l’equation generale ut = a(., u, φ(., u)x)x + v de type parabolique pouvant degenerer en hyperbolique du premier ordre pour certaines valeurs de (x, u). Utilisant la theorie des semi-groupes non lineaires dans L1, nous etablissons des resultats d’existence, d’unicite et de dependance continue par rapport aux donnees, d’une « bonne solution » du probleme de Cauchy ou de problemes aux limites associes a cette equation sous des hypotheses tres generales sur les donnees. Avec des hypotheses complementaires, nous montrons que cette « bonne solution » est « solution entropique », nous etudions l’unicite des solutions faibles et l’existence de solution forte.
Archive | 2004
Philippe Benilan; Halima Labani
Let us consider as an example, the reaction-diffusion system named “Brusselator”:
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 1995
Philippe Benilan; Lucio Boccardo; Thierry Gallouët; Ron Gariepy; Michel Pierre; Juan Luis Vázquez
Indiana University Mathematics Journal | 1982
Philippe Benilan; Michael G. Crandall; Michel Pierre
{u_t} - {d_1}\Delta u = {u^2}v - \left( {B + 1} \right)u + A in \left( {0,T} \right) \times \Omega
Advances in Differential Equations | 1996
Philippe Benilan; Petra Wittbold
Archive | 1980
Michael G. Crandall; Philippe Benilan
(0.1)
North-holland Mathematics Studies | 2004
Philippe Benilan; Haim Brezis