Philippe Boutin
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Boutin.
Nature | 2007
Robert Sladek; Ghislain Rocheleau; Johan Rung; Christian Dina; Lishuang Shen; David Serre; Philippe Boutin; Daniel Vincent; Alexandre Belisle; Samy Hadjadj; Beverley Balkau; Barbara Heude; Guillaume Charpentier; Thomas J. Hudson; Alexandre Montpetit; Alexey V. Pshezhetsky; Marc Prentki; Barry I. Posner; David J. Balding; David Meyre; Constantin Polychronakos; Philippe Froguel
Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case–control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function (IDE–KIF11–HHEX and EXT2–ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
Nature Genetics | 2005
David Meyre; Nabila Bouatia-Naji; Agnès Tounian; Chantal Samson; Cécile Lecoeur; Vincent Vatin; Maya Ghoussaini; Christophe Wachter; Serge Hercberg; Guillaume Charpentier; Wolfgang Patsch; François Pattou; Marie-Aline Charles; Patrick Tounian; Karine Clément; Béatrice Jouret; Jacques Weill; Betty A. Maddux; Ira D. Goldfine; Andrew Walley; Philippe Boutin; Christian Dina; Philippe Froguel
We identified a locus on chromosome 6q16.3–q24.2 (ref. 1) associated with childhood obesity that includes 2.4 Mb common to eight genome scans for type 2 diabetes (T2D) or obesity. Analysis of the gene ENPP1 (also called PC-1), a candidate for insulin resistance, in 6,147 subjects showed association between a three-allele risk haplotype (K121Q, IVS20delT–11 and A→G+1044TGA; QdelTG) and childhood obesity (odds ratio (OR) = 1.69, P = 0.0006), morbid or moderate obesity in adults (OR = 1.50, P = 0.006 or OR = 1.37, P = 0.02, respectively) and T2D (OR = 1.56, P = 0.00002). The Genotype IBD Sharing Test suggested that this obesity-associated ENPP1 risk haplotype contributes to the observed chromosome 6q linkage with childhood obesity. The haplotype confers a higher risk of glucose intolerance and T2D to obese children and their parents and associates with increased serum levels of soluble ENPP1 protein in children. Expression of a long ENPP1 mRNA isoform, which includes the obesity-associated A→G+1044TGA SNP, was specific for pancreatic islet beta cells, adipocytes and liver. These findings suggest that several variants of ENPP1 have a primary role in mediating insulin resistance and in the development of both obesity and T2D, suggesting that an underlying molecular mechanism is common to both conditions.
Diabetologia | 1998
El Habib Hani; Philippe Boutin; Emmanuelle Durand; H. Inoue; M. A. Permutt; Gilberto Velho; P. Froguel
Summary The K+ inwardly rectifier channel (KIR) is one of the two sub-units of the pancreatic islet ATP-sensitive potassium channel complex (IKATP), which has a key role in glucose-stimulated insulin secretion and thus is a potential candidate for a genetic defect in Type II (non-insulin-dependent) diabetes mellitus. We did a molecular screening of the KIR6.2 gene by single strand conformational polymorphism (SSCP) and direct sequencing in 72 French Caucasian Type II diabetic families. We identified three nucleotide substitutions resulting in three amino acid changes (E23K, L270V and I337V), that have also been identified in other Caucasian Type II diabetic subjects. These variants were genotyped in French cohorts of 191 unrelated Type II diabetic probands and 119 normoglycaemic control subjects and association studies were done. The genotype frequencies of the L270V and I337V variants were not very different between Type II diabetic subjects and control groups. In contrast, analysis of the E23K variant showed that the KK homozygocity was more frequent in Type II diabetic than in control subjects (27 vs 14 %, p = 0.015). Analyses in a recessive model (KK vs EK/EE) tended to show a stronger association of the K allele with diabetes (p = 0.0097, corrected p-value for multiple testing < 0.02). The data for the E23K variant obtained here and those obtained from three other Caucasian groups studied so far were combined and investigated by meta-analysis. Overall, the E23K variant was found to be significantly associated with Type II diabetes (0.001 ≤p≤ 0.0016, corrected p-values for multiple testing p≤ 0.01). This study shows that KIR6.2 polymorphisms are frequently associated with Type II diabetes in French Caucasians. Furthermore, a meta-analysis combining different Caucasian groups suggests an significant role of KIR6.2 in the polygenic context of Type II diabetes. [Diabetologia (1998) 41: 1511–1515]
Nature Genetics | 2008
Michael Benzinou; John Creemers; Hélène Choquet; Stéphane Lobbens; Christian Dina; Emmanuelle Durand; Audrey Guérardel; Philippe Boutin; Béatrice Jouret; Barbara Heude; Beverley Balkau; Jean Tichet; Michel Marre; Natascha Potoczna; Fritz Horber; Catherine Le Stunff; Sébastien Czernichow; Annelli Sandbæk; Torsten Lauritzen; Knut Borch-Johnsen; Gitte Andersen; Wieland Kiess; Antje Körner; Peter Kovacs; Peter Jacobson; Lena M.S. Carlsson; Andrew Walley; Torben Jørgensen; Torben Hansen; Oluf Pedersen
Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 × 10−8 and P = 2.31 × 10−12, respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.
Nature Genetics | 2000
Gérard Waeber; Jérôme Delplanque; Christophe Bonny; Vincent Mooser; Myriam Steinmann; Christian Widmann; Anne Maillard; Judith Miklossy; Christian Dina; El Habib Hani; Nathalie Vionnet; Pascal Nicod; Philippe Boutin; Philippe Froguel
Type 2 diabetes is a polygenic and genetically heterogenous disease. The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs ). We evaluated the role of IB1 in β-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma β-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IB1 protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on 149 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (S59N) that segregated with diabetes. In vitro , this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of β-cell function.
PLOS Biology | 2003
Philippe Boutin; Christian Dina; Francis Vasseur; Severine G. Dubois; Laetitia Corset; Karin Séron; Lynn M. Bekris; Janice Cabellon; Bernadette Neve; Valérie Vasseur-Delannoy; Mohamed Chikri; M. Aline Charles; Karine Clément; Åke Lernmark; Philippe Froguel
The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.
Diabetologia | 1998
Jean-Claude Chèvre; El Habib Hani; Philippe Boutin; Martine Vaxillaire; H. Blanché; Nathalie Vionnet; V. C. Pardini; José Timsit; E. Larger; Guillaume Charpentier; D. Beckers; M. Maes; Christine Bellanné-Chantelot; Gilberto Velho; Philippe Froguel
Summary Maturity-onset diabetes of the young (MODY) is a heterogeneous subtype of non-insulin-dependent diabetes mellitus characterised by early onset, autosomal dominant inheritance and a primary defect in insulin secretion. To date five MODY genes have been identified: hepatocyte nuclear factor-4 alpha (HNF-4α/MODY1/TCF14) on chromosome 20 q, glucokinase (GCK/MODY2) on chromosome 7 p, hepatocyte nuclear factor-1 alpha (HNF-1α/MODY3/TCF1) on chromosome 12 q, insulin promoter factor-1 (IPF1/MODY4) on chromosome 13 q and hepatocyte nuclear factor-1 beta (HNF-1β/MODY5/TCF2) on chromosome 17cen-q. We have screened the HNF-4α, HNF-1α and HNF-1β genes in members of 18 MODY kindreds who tested negative for glucokinase mutations. Five missense (G31D, R159W, A161T, R200W, R271W), one substitution at the splice donor site of intron 5 (IVS5nt + 2T→A) and one deletion mutation (P379fsdelT) were found in the HNF-1α gene, but no MODY-associated mutations were found in the HNF-4α and HNF-1β genes. Of 67 French MODY families that we have now studied, 42 (63 %) have mutations in the glucokinase gene, 14 (21 %) have mutations in the HNF-1α gene, and 11 (16 %) have no mutations in the HNF-4α, IPF1 and HNF-1β genes. Eleven families do not have mutations in the five known MODY genes suggesting that there is at least one additionnal locus that can cause MODY. [Diabetologia (1998) 41: 1017–1023]
Journal of Biological Chemistry | 1999
Martine Vaxillaire; Amar Abderrahmani; Philippe Boutin; Bernard Bailleul; Philippe Froguel; Moshe Yaniv; Marco Pontoglio
Hepatocyte nuclear factor 1α (HNF1α) is an atypical dimeric homeodomain-containing protein that is expressed in liver, intestine, stomach, kidney, and pancreas. Mutations in the HNF1α gene are associated with an autosomal dominant form of non-insulin-dependent diabetes mellitus called maturity-onset diabetes of the young (MODY3). More than 80 different mutations have been identified so far, many of which involve highly conserved amino acid residues among vertebrate HNF1α. In the present work, we investigated the molecular mechanisms by which MODY3 mutations could affect HNF1α function. For this purpose, we analyzed the properties of 10 mutants resulting in amino acid substitutions or protein truncation. Some mutants have a reduced protein stability, whereas others are either defective in the DNA binding or impaired in their intrinsic trans-activation potential. Three mutants, characterized by a complete loss of trans-activation, behave as dominant negatives when transfected with the wild-type protein. These data define a clear causative relationship between MODY3 mutations and functional defects in HNF1α trans-activation. In addition, our analysis sheds new light on the structure of a homeoprotein playing a key role in pancreatic β cell function.
PLOS Clinical Trials | 2006
Thorkild I. A. Sørensen; Philippe Boutin; Moira A. Taylor; Lesli H. Larsen; Camilla Verdich; Liselotte Petersen; Claus Holst; Søren M. Echwald; Christian Dina; Søren Toubro; Martin Nordal Petersen; Jan Polak; Karine Clément; J. Alfredo Martínez; Dominique Langin; Jean-Michel Oppert; Vladimir Stich; Ian A. Macdonald; Peter Arner; Wim H. M. Saris; Oluf Pedersen; Arne Astrup; Philippe Froguel
Objectives: To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet. Design: Randomised, parallel, two-arm, open-label multi-centre trial. Setting: Eight clinical centres in seven European countries. Participants: 771 obese adult individuals. Interventions: 10-wk dietary intervention to hypo-energetic (−600 kcal/d) diets with a targeted fat energy of 20%–25% or 40%–45%, completed in 648 participants. Outcome Measures: WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants. Results: Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from −0.6 to 0.8 kg, and homozygotes, from −0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to −1.6 kg in heterozygotes, and from 3.8 kg to −2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant. Conclusions: Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet.
Experimental Biology and Medicine | 2001
Philippe Froguel; Philippe Boutin
Although rapid globalization of the Westernized way of life is responsible for the large rise in the number of obesity cases (about 1 billion individuals are now overweight or frankly obese), obesity is a typical common multifactorial disease in that environmental and genetic factors interact, resulting in a disease state (1). There is strong evidence for a genetic component to human obesity: e.g., the familial clustering (the relative risk among siblings being 3–7) (2) and the high concordance of body composition in monozygotic twins (3). However, the role of genetic factors in many human obesities (referred to as “common obesity” in this review) is complex, being determined by interaction of several genes (polygenic), each of which may have relatively small effects (i.e., they are “susceptibility” genes and work in combination with each other as well as with environmental factors such as nutrients, physical activity, and smoking).