Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Callac is active.

Publication


Featured researches published by Philippe Callac.


Fungal Diversity | 2015

Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species

Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansa; Darbhe J. Bhat; Saranyaphat Boonmee; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Rungtiwa Phookamsak; Chayanard Phukhamsakda; Belle Damodara Shenoy; Mohamed A. Abdel-Wahab; Bart Buyck; Jie Chen; K. W. Thilini Chethana; Chonticha Singtripop; Dong Qin Dai; Yu Cheng Dai; Dinushani A. Daranagama; Asha J. Dissanayake; Mingkwan Doilom; Melvina J. D’souza; Xin Lei Fan; Ishani D. Goonasekara; Kazuyuki Hirayama; Sinang Hongsanan; Subashini C. Jayasiri; Ruvishika S. Jayawardena; Samantha C. Karunarathna; Wen-Jing Li

This paper is a compilation of notes on 110 fungal taxa, including one new family, 10 new genera, and 76 new species, representing a wide taxonomic and geographic range. The new family, Paradictyoarthriniaceae is introduced based on its distinct lineage in Dothideomycetes and its unique morphology. The family is sister to Biatriosporaceae and Roussoellaceae. The new genera are Allophaeosphaeria (Phaeosphaeriaceae), Amphibambusa (Amphisphaeriaceae), Brunneomycosphaerella (Capnodiales genera incertae cedis), Chaetocapnodium (Capnodiaceae), Flammeascoma (Anteagloniaceae), Multiseptospora (Pleosporales genera incertae cedis), Neogaeumannomyces (Magnaporthaceae), Palmiascoma (Bambusicolaceae), Paralecia (Squamarinaceae) and Sarimanas (Melanommataceae). The newly described species are the Ascomycota Aliquandostipite manochii, Allophaeosphaeria dactylidis, A. muriformia, Alternaria cesenica, Amphibambusa bambusicola, Amphisphaeria sorbi, Annulohypoxylon thailandicum, Atrotorquata spartii, Brunneomycosphaerella laburni, Byssosphaeria musae, Camarosporium aborescentis, C. aureum, C. frutexensis, Chaetocapnodium siamensis, Chaetothyrium agathis, Colletotrichum sedi, Conicomyces pseudotransvaalensis, Cytospora berberidis, C. sibiraeae, Diaporthe thunbergiicola, Diatrype palmicola, Dictyosporium aquaticum, D. meiosporum, D. thailandicum, Didymella cirsii, Dinemasporium nelloi, Flammeascoma bambusae, Kalmusia italica, K. spartii, Keissleriella sparticola, Lauriomyces synnematicus, Leptosphaeria ebuli, Lophiostoma pseudodictyosporium, L. ravennicum, Lophiotrema eburnoides, Montagnula graminicola, Multiseptospora thailandica, Myrothecium macrosporum, Natantispora unipolaris, Neogaeumannomyces bambusicola, Neosetophoma clematidis, N. italica, Oxydothis atypica, Palmiascoma gregariascomum, Paraconiothyrium nelloi, P. thysanolaenae, Paradictyoarthrinium tectonicola, Paralecia pratorum, Paraphaeosphaeria spartii, Pestalotiopsis digitalis, P. dracontomelon, P. italiana, Phaeoisaria pseudoclematidis, Phragmocapnias philippinensis, Pseudocamarosporium cotinae, Pseudocercospora tamarindi, Pseudotrichia rubriostiolata, P. thailandica, Psiloglonium multiseptatum, Saagaromyces mangrovei, Sarimanas pseudofluviatile, S. shirakamiense, Tothia spartii, Trichomerium siamensis, Wojnowicia dactylidicola, W. dactylidis and W. lonicerae. The Basidiomycota Agaricus flavicentrus, A. hanthanaensis, A. parvibicolor, A. sodalis, Cantharellus luteostipitatus, Lactarius atrobrunneus, L. politus, Phylloporia dependens and Russula cortinarioides are also introduced. Epitypifications or reference specimens are designated for Hapalocystis berkeleyi, Meliola tamarindi, Pallidocercospora acaciigena, Phaeosphaeria musae, Plenodomus agnitus, Psiloglonium colihuae, P. sasicola and Zasmidium musae while notes and/or new sequence data are provided for Annulohypoxylon leptascum, A. nitens, A. stygium, Biscogniauxia marginata, Fasciatispora nypae, Hypoxylon fendleri, H. monticulosum, Leptosphaeria doliolum, Microsphaeropsis olivacea, Neomicrothyrium, Paraleptosphaeria nitschkei, Phoma medicaginis and Saccotheciaceae. A full description of each species is provided with light micrographs (or drawings). Molecular data is provided for 90 taxa and used to generate phylogenetic trees to establish a natural classification for species.


Mycologia | 1993

Morphological, genetic, and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran Desert of California

Philippe Callac; Christophe Billette; Micheline Imbernon; Richard W. Kerrigan

A distinctive variety of A. bisporus has been discovered in several habitats in the low Sonoran Desert of the Coachella Valley of California at elevations below sea level. The tetrasporic character of the basidia is consistently predominant in this local population. The spores of this population tend to be shorter and narrower than those of the bisporic strains. The genotypes of two individuals from this population clearly place them in the species A. bisporus, where they form a cohesive group in specieswide cluster analyses of nuclear genotypic similarity. The relative genetic divergence of this population from others in the species is of a similar order to that observed between other geographically isolated, bisporic populations of the species. The tetrasporic individuals exhibit complete interfertility with several bisporic strains of European and Coastal Californian origin. Because of their basidial and spore morphologies, these mushrooms do not fall within the traditional circumscription of A. bisporus. Varietal status is proposed for these distinctive, tetrasporic members ofthe species, and A. bisporus var. burnettii is described. Primary habitat of these mushrooms is being destroyed rapidly near our field sites. Geographical range of the variety is unknown.


Fungal Diversity | 2011

Major clades in tropical Agaricus

Rui-Lin Zhao; Samantha C. Karunarathna; Olivier Raspé; Luis A. Parra; Jacques Guinberteau; Magalie Moinard; André De Kesel; Gérard Barroso; Régis Courtecuisse; Kevin D. Hyde; Atsu K. Guelly; Dennis E. Desjardin; Philippe Callac

Agaricus (Basidiomycota) is a genus of saprobic fungi that includes edible cultivated species such as Agaricus bisporus, the button mushroom. There has been considerable ecological, nutritional and medicinal interest in the genus, yet the extent of its diversity remains poorly known, particularly in subtropical and tropical areas. Classification of tropical species has for a large part followed the classification of temperate species. The objective of our study was to examine to what extent this system of classification is appropriate for tropical Agaricus species. Species from temperate sections were therefore compared to the major clades of tropical species using a phylogenetic approach. ITS1 + 2 sequence data from 128 species were used in the phylogenetic analysis. Specimens included four species of genera closely related to Agaricus, 38 temperate species representing the eight classical sections of the genus, and 86 putative species of Agaricus from tropical areas of Africa, Asia and the Americas. Bayesian and maximum likelihood analyses produced relatively congruent trees and almost identical clades. Our data show that (i) only about one-third of tropical species belong to the classical sections based on temperate species; the systematics of the genus therefore needs to be expanded; (ii) among the remaining two-thirds of tropical species, those from the Americas and those from Africa and/or Asia group in distinct clades, suggesting that secondary diversification occurred in these two areas; (iii) in contrast, several clades of classical sections contain American and African + Asian species along with temperate species. In this study, we used approximately 50 distinct species from a small area of northern Thailand, most probably being novel species. This diversity indicates that Agaricus is a species-rich genus in the tropics as well as in temperate regions. The number of species and the hypothetical paleotropical origin of the genus are discussed.


PLOS ONE | 2010

The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns.

Cyril Férandon; Serge Moukha; Philippe Callac; Jean-Pierre Benedetto; Michel Castroviejo; Gérard Barroso

In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.


Mycologia | 2003

A phylogenetic reconstruction and emendation of Agaricus section Duploannulatae.

Michael P. Challen; Richard W. Kerrigan; Philippe Callac

Agaricus section Duploannulatae comprises the group of species allied with A. bisporus and A. bitorquis. Disagreement exists in the literature regarding the composition of this group. We used DNA sequence data from the ITS segments of the nuclear ribosomal DNA region, in a sample of European and North American isolates, to identify characters shared by this group, to further delimit species-level taxa within the section, and to develop a phylogenetic hypothesis. Shared polymorphisms that suggest a natural limit for section Duploannulatae were found. ITS1 data were assessed using parsimony, distance and maximum likelihood methods of phylogeny. The section Duploannulatae comprised six robust clades. Five clades corresponded to well characterized species from the temperate Northern Hemisphere (A. bisporus, A. subfloccosus, A. bitorquis, A. vaporarius, A. cupressicola). The sixth clade encompassed an A. devoniensis complex. Species concepts, nomenclature, and relationships are discussed and compared with prior reports.


Molecular Ecology | 1998

Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus

Jianping Xu; Richard W. Kerrigan; A.S.M. Sonnenberg; Philippe Callac; Paul A. Horgen; James B. Anderson

We investigated the patterns of mitochondrial DNA variation in the global population of the commercial mushroom Agaricus bisporus. Through the analysis of RFLPs among 441 isolates from nine countries in North America and Eurasia, we found a total of 140 mtDNA haplotypes. Based on population genetic analysis, there are four genetically distinct natural populations in this species, found in coastal California, desert California, France and Alberta (Canada). While 134 of the 140 mtDNA haplotypes were unique to single geographical regions, two mtDNA haplotypes, mt001 and mt002, were found in almost every population surveyed. These two mtDNA haplotypes also predominate among cultivars used throughout the world for at least the last two decades. These two mtDNA haplotypes are more similar to the cosmopolitan groups of mtDNA haplotypes than to the indigeneous clusters of mtDNA haplotypes from the two Californian regions.


Mycologia | 2003

A novel homothallic variety of Agaricus bisporus comprises rare tetrasporic isolates from Europe

Philippe Callac; Isabelle Jacobé de Haut; Micheline Imbernon; Jacques Guinberteau; Christophe Desmerger; Ioanna Theochari

Among 400 wild specimens of A. bisporus collected in Europe, only three were tetrasporic. In the case of two of them from France, a previous study showed that one was homokaryotic and hypothetically belonged to a homothallic entity while the other was heterokaryotic and possibly resulted from hybridization between a member of this entity and a classical bisporic strain. A third tetrasporic specimen recently was discovered in Greece. Morphological and genetic comparisons, using alloenzymatic markers, molecular markers and ITS polymorphisms, reveal that this third specimen is homokaryotic and belongs, with the homokaryotic specimen from France, to the same entity. Dissimilarity analysis confirms the hybrid origin of the heterokaryotic specimen. Varietal status is proposed for this homothallic, highly homogeneous entity, and A. bisporus var. eurotetrasporus is described. This novel variety clearly differs from var. bisporus by its tetrasporic basidia and from var. burnettii by its longer spores. It has a complex story because it can interbreed with var. bisporus and shares the same habitat; however, because of its homothallic life cycle and its partial intersterility, it is probably in the process of speciation.


Mycologia | 2005

Agaricus section Xanthodermatei: a phylogenetic reconstruction with commentary on taxa

Richard W. Kerrigan; Philippe Callac; Jacques Guinberteau; Michael P. Challen; Luis A. Parra

Agaricus section Xanthodermatei comprises a group of species allied to A. xanthodermus and generally characterized by basidiomata having phenolic odors, transiently yellowing discolorations in some parts of the basidiome, Schaeffer’s reaction negative, and mild to substantial toxicity. The section has a global distribution, while most included species have distributions restricted to regions of single continents. Using specimens and cultures from Europe, North America, and Hawaii, we analyzed DNA sequences from the ITS1+2 region of the nuclear rDNA to identify and characterize phylogenetically distinct entities and to construct a hypothesis of relationships, both among members of the section and with representative taxa from other sections of the genus. 61 sequences from affiliated taxa, plus 20 from six (or seven) other sections of Agaricus, and one Micropsalliota sequence, were evaluated under distance, maximum parsimony and maximum likelihood methods. We recognized 21 discrete entities in Xanthodermatei, including 14 established species and 7 new ones, three of which are described elsewhere. Four species from California, New Mexico, and France deserve further study before they are described. Type studies of American taxa are particularly emphasized, and a lectotype is designated for A. californicus. Section Xanthodermatei formed a single clade in most analyses, indicating that the traditional sectional characters noted above are good unifying characters that appear to have arisen only once within Agaricus. Deep divisions within the sequence-derived structure of the section could be interpreted as subsections in Xanthodermatei; however, various considerations led us to refrain from proposing new supraspecific taxa. The nearest neighbors of section Xanthodermatei are putatively in section Duploannulati.


Fungal Diversity | 2016

Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the Agaricus taxonomic system

Rui-Lin Zhao; Jun-Liang Zhou; Jie Chen; Simona Margaritescu; Santiago Sánchez-Ramírez; Kevin D. Hyde; Philippe Callac; Luis A. Parra; Guo-Jie Li; Jean-Marc Moncalvo

The recognition of taxonomic ranks in the Linnean classification system is largely arbitrary. Some authors have proposed the use of divergence time as a universally standardized criterion. Agaricus (Agaricaceae, Agaricales) is a mushroom genus that contains many species of high commercial value. Recent studies using ITS sequence data discovered 11 new phylogenetic lineages within the genus, however their taxonomic ranks were uncertain due to the lack of criteria to define them within traditional taxonomy. In this study, we analyzed ITS sequence data from 745 collections (nearly 600 being newly generated) including 86 from type specimens of previously recognized subgenera and sections. Many monophyletic groups were recognized, but most basal relationships were unresolved. One hundred and fourteen representatives of the identified ITS clades were selected in order to produce a multi-gene phylogeny based on combined LSU, tef-1α, and rpb2 sequence data. Divergence times within the multi-gene phylogeny were estimated using BEAST v1.8. Based on phylogenetic relationships and with respect to morphology, we propose a revised taxonomic system for Agaricus that considers divergence time as a standardized criterion for establishing taxonomic ranks. We propose to segregate Agaricus into five subgenera and 20 sections. Subgenus Pseudochitonia is substantially emended; circumscription of the subgenera Agaricus and Flavoagaricus is restricted to taxa of sections Agaricus and Arvenses, respectively; and two new subgenera (Minores and Spissicaules) are introduced. Within Pseudochitonia, sections Bivelares, Brunneopicti, Chitonioides, Nigrobrunnescentes, Sanguinolenti and Xanthodermatei are maintained, but the latter two are reduced because we raise subsection Bohusia to sectional rank and a clade within section Xanthodermatei is formally introduced as section Hondenses; and sections Rubricosi, Crassispori, Flocculenti, and Amoeni are introduced. Section Laeticolores is placed in the subgenus Minores and sections Rarolentes and Subrutilescentes are placed in the subgenus Spissicaules. Twenty-two new species belonging to various sections are described. This work exemplifies that ITS data, while useful at lower taxonomic levels (i.e., detection of species and species groups), are of limited value for inferring deeper phylogenetic relationships. Finally, we suggest that the establishment of a standardized taxonomic system based on divergence times could result in a more objective, and biologically more meaningful, taxonomic ranking of fungi.


Microbiology | 2002

Fine-scale genetic analyses reveal unexpected spatial-temporal heterogeneity in two natural populations of the commercial mushroom Agaricus bisporus

Jianping Xu; Christophe Desmerger; Philippe Callac

This study examined the fine-scale genetic variation of the commercial mushroom, Agaricus bisporus, over 2 years at two sites in France. One site was a meadow fertilized with horse manure and disturbed regularly by humans; the other was a Monterey cypress forest free of human disturbance. Altogether, 50 mushrooms were collected and analysed for mitochondrial and nuclear genetic variation marked by RFLPs and multilocus enzyme electrophoretic polymorphisms. Population samples from these two sites were genetically different and both sites contained high levels of genetic diversity. No identical genotypes were found at either site between the 2 years and there was little evidence for extensive vegetative clonality for this species. Contrary to expectations, very limited evidence of pseudohomothallic reproduction was found. Results from tests of Hardy-Weinberg equilibrium and genotypic equilibrium showed that outcrossing and recombination have played significant roles in both populations. The results demonstrated spatial-temporal genetic heterogeneity of A. bisporus in natural populations.

Collaboration


Dive into the Philippe Callac's collaboration.

Top Co-Authors

Avatar

Kevin D. Hyde

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar

Rui-Lin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Chen

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar

Jacques Guinberteau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Richard W. Kerrigan

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar

Micheline Imbernon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Olivier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Magalie Moinard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Billette

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge