Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Chafey is active.

Publication


Featured researches published by Philippe Chafey.


Hepatology | 2004

Identification of the leukocyte cell‐derived chemotaxin 2 as a direct target gene of β‐catenin in the liver

Christine Ovejero; Catherine Cavard; Axel Périanin; Theodorus B. M. Hakvoort; Jacqueline L. M. Vermeulen; Cécile Godard; Monique Fabre; Philippe Chafey; Kazuo Suzuki; Béatrice Romagnolo; Satoshi Yamagoe; Christine Perret

To clarify molecular mechanisms underlying liver carcinogenesis induced by aberrant activation of Wnt pathway, we isolated the target genes of β‐catenin from mice exhibiting constitutive activated β‐catenin in the liver. Adenovirus‐mediated expression of oncogenic β‐catenin was used to isolate early targets of β‐catenin in the liver. Suppression subtractive hybridization was used to identify the leukocyte cell‐derived chemotaxin 2 (LECT2) gene as a direct target of β‐catenin. Northern blot and immunohistochemical analyses demonstrated that LECT2 expression is specifically induced in different mouse models that express activated β‐catenin in the liver. LECT2 expression was not activated in livers in which hepatocyte proliferation was induced by a β‐catenin–independent signal. We characterized by mutagenesis the LEF/TCF site, which is crucial for LECT2 activation by β‐catenin. We further characterized the chemotactic property of LECT2 for human neutrophils. Finally, we have shown an up‐regulation of LECT2 in human liver tumors that expressed aberrant activation of β‐catenin signaling; these tumors constituted a subset of hepatocellular carcinomas (HCC) and most of the hepatoblastomas that were studied. In conclusion, our results show that LECT2, which encodes a protein with chemotactic properties for human neutrophils, is a direct target gene of Wnt/β‐catenin signaling in the liver. Since HCC develops mainly in patients with chronic hepatitis or cirrhosis induced by viral or inflammatory factors, understanding the role of LECT2 in liver carcinogenesis is of interest and may lead to new therapeutic perspectives. (HEPATOLOGY 2004;40:167–176.)


Stem Cells | 2012

Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor

Cécile Thirant; Eva-Maria Galan-Moya; Luiz Gustavo Dubois; Sébastien Pinte; Philippe Chafey; Cédric Broussard; Pascale Varlet; Bertrand Devaux; Fabrice Soncin; Julie Gavard; Marie-Pierre Junier; Hervé Chneiweiss

Presence in glioblastomas of cancer cells with normal neural stem cell (NSC) properties, tumor initiating capacity, and resistance to current therapies suggests that glioblastoma stem‐like cells (GSCs) play central roles in glioblastoma development. We cultured human GSCs endowed with all features of tumor stem cells, including tumor initiation after xenograft and radio‐chemoresistance. We established proteomes from four GSC cultures and their corresponding whole tumor tissues (TTs) and from human NSCs. Two‐dimensional difference gel electrophoresis and tandem mass spectrometry revealed a twofold increase of hepatoma‐derived growth factor (HDGF) in GSCs as compared to TTs and NSCs. Western blot analysis confirmed HDGF overexpression in GSCs as well as its presence in GSC‐conditioned medium, while, in contrast, no HDGF was detected in NSC secretome. At the functional level, GSC‐conditioned medium induced migration of human cerebral endothelial cells that can be blocked by anti‐HDGF antibodies. In vivo, GSC‐conditioned medium induced neoangiogenesis, whereas HDGF‐targeting siRNAs abrogated this effect. Altogether, our results identify a novel candidate, by which GSCs can support neoangiogenesis, a high‐grade glioma hallmark. Our strategy illustrates the usefulness of comparative proteomic analysis to decipher molecular pathways, which underlie GSC properties. STEM CELLS 2012;30:845–853


Proteomics | 2009

Proteomic analysis of β-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway

Philippe Chafey; Laetitia Finzi; Raphaël Boisgard; Michèle Caüzac; Guillem Clary; Cédric Broussard; Jean-Paul Pégorier; François Guillonneau; Patrick Mayeux; Luc Camoin; Bertrand Tavitian; Sabine Colnot; Christine Perret

The Wnt/β‐catenin signaling pathway has been increasingly implicated in liver development and physiology. Aberrant activation of this pathway is one of the major genetic events observed during the process of human HCC development. To gain insight into the mechanism underlying β‐catenin action in the liver, we conducted a quantitative differential proteomic analysis using 2‐D DIGE combined with MS, in mice with liver‐specific deletion of Apc resulting in acute activation of β‐catenin signaling (ApcKOliv mice). We identified 94 protein spots showing differential expression between mutant ApcKOliv and control mice, corresponding to 56 individual proteins. Most of the proteins identified were associated with metabolic pathways, such as ammonia and glucose metabolism. Our analysis showed an increase in lactate dehydrogenase activity together with a downregulation of two mitochondrial ATPase subunits (ATP5a1 and ATP5b). These observations indicate that β‐catenin signaling may induce a shift in the glucose metabolism from oxidative phosphorylation to glycolysis, known as the “Warburg effect”. Imaging with 18F‐fluoro‐2‐deoxy‐D‐glucose‐positron emission tomography suggests that the specific metabolic reprogramming induced by β‐catenin in the liver does not imply the first step of glycolysis. This observation may explain why some HCCs are difficult to assess by fluoro‐2‐deoxy‐D‐glucose‐positron emission tomography imaging.


Biotechnology Progress | 2012

Analysis of transcriptomic and proteomic profiles demonstrates improved Madin–Darby canine kidney cell function in a renal microfluidic biochip

Leila Choucha Snouber; Franck Letourneur; Philippe Chafey; Cédric Broussard; Matthieu Monge; Cécile Legallais; Eric Leclerc

We have evaluated the influence of the microfluidic environment on renal cell functionality. For that purpose, we performed a time lapse transcriptomic and proteomic analysis in which we compared gene and protein expressions of Madin–Darby canine kidney cells after 24 h and 96 h of culture in both microfluidic biochips and plates. The transcriptomic and proteomic integration revealed that the ion transporters involved in calcium, phosphate, and sodium homoeostasis and several genes involved in H+ transporters and pH regulation were up‐regulated in microfluidic biochips. Concerning drug metabolism, we found Phase I (CYP P450), Phase II enzymes (GST), various multidrug resistance genes (MRP), and Phase III transporters (SLC) were also up‐regulated in the biochips. Furthermore, the study shows that those inductions were correlated with the induction of the Ahr and Nrf‐2 dependent pathways, which results in a global cytoprotective response induced by the microenvironment. However, there was no apoptosis situation or cell death in the biochips. Microfluidic biochips may thus provide an important insight into exploring xenobiotic injury and transport modifications in this type of bioartificial microfluidic kidney. Finally, the investigation demonstrated that combining the transcriptomic and proteomic analyses obtained from a cell “on chip” culture would provide a pertinent new tool in the mechanistic interpretation of cellular mechanisms for predicting kidney cell toxicity and renal clearance in vitro.


Journal of Virology | 2013

Comparative Proteomic Analysis of HIV-1 Particles Reveals a Role for Ezrin and EHD4 in the Nef-dependent Increase of Virus Infectivity

Christelle Brégnard; Alessia Zamborlini; Marjorie Leduc; Philippe Chafey; Luc Camoin; Ali Saïb; Serge Benichou; Olivier Danos; Stéphane Basmaciogullari

ABSTRACT Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.


Proteomics | 2013

Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats

Cécile Faure; Béatrice Morio; Philippe Chafey; Servane Le Plénier; Philippe Noirez; Voahangy Randrianarison-Huetz; Luc Cynober; Christian Aussel; Christophe Moinard

Citrulline (Cit) actions on muscle metabolism remain unclear. Those latter were investigated using a proteomic approach on Tibialis muscles from male Sprague‐Dawley rats. At 23 months of age, rats were either fed ad libitum (AL group) or subjected to dietary restriction for 12 weeks. At the end of the restriction period, one group of rats was euthanized (R group) and two groups were refed for one week with a standard diet supplemented with nonessential amino acids group or Cit (CIT group). Results of the proteomic approach were validated using targeted Western blot analysis and assessment of gene expression of the related genes. Maximal activities of the key enzymes involved in mitochondrial functioning were also determined. Cit supplementation results in a significant increase in the protein expression of the main myofibrillar constituents and of a few enzymes involved in glycogenolysis and glycolysis (CIT vs. AL and R, p < 0.05). Conversely, the expression of oxidative enzymes from Krebs cycle and mitochondrial respiratory chain was significantly decreased (CIT vs. AL, p < 0.05). However, maximal activities of key enzymes of mitochondrial metabolism were not significantly affected, except for complex 1 which presented an increased activity (CIT vs. AL and R, p < 0.05). In conclusion, Cit supplementation increases expression of the main myofibrillar proteins and seems to induce a switch in muscle energy metabolism, from aerobia toward anaerobia.


Autoimmunity Reviews | 2017

Molecular analysis of vascular smooth muscle cells from patients with giant cell arteritis: Targeting endothelin-1 receptor to control proliferation ☆

Alexis Régent; Kim Heang Ly; Matthieu Groh; Chabha Khifer; S. Lofek; Guilhem Clary; Philippe Chafey; Véronique Baud; Cédric Broussard; Christian Federici; François Labrousse; Laura Mesturoux; Claire Le Jeunne; Elisabeth Vidal; Antoine P. Brézin; Véronique Witko-Sarsat; Loïc Guillevin; Luc Mouthon

OBJECTIVEnThe pathophysiology of giant cell arteritis (GCA) and the mechanisms underlying vascular remodeling, are poorly understood. We aimed to compare vascular smooth muscle cells (VSMCs) from patients with GCA and controls by a proteomic and gene expression profile approach and to identify the signaling pathways involved in proliferation.nnnMETHODSnVSMCs were cultured from temporal artery biopsies (TABs) from patients with biopsy-proven GCA (TAB+-GCA), biopsy-negative GCA (TAB--GCA), and diagnosis other than GCA (GCA-control). VSMCs from normal human aorta (HAoSMC) were used as controls. 2D-differential in-gel electrophoresis and Affymetrix chips were used to compare proteomes and gene expression profiles of VSMCs. Proliferation was assessed by BrdU incorporation assay. TAB+-GCA and GCA-control TABs underwent immunohistochemistry staining for endothelin-1 (ET-1) and receptors ETAR and ETBR.nnnRESULTSnWe identified 16, 30 and 2 protein spots differentially expressed between TAB+-GCA and GCA-control VSMCs, TAB+-GCA and TAB--GCA VSMCs and TAB--GCA and GCA-control VSMCs, respectively (fold change ≥1.5 and p≤0.05). Among the 153 proteins differentially expressed between TAB+-GCA and HAoSMC VSMCs, many were linked with ET-1. Genes differentially expressed between TAB+-GCA and GCA-control VSMCs were involved in proliferation. ET-1 was identified as a link between genes of interest. Proliferation was reduced for TAB+-GCA VSMCs on treatment with the endothelin antagonist macitentan and its active metabolite. Patients showing transmural expression of ET-1 in temporal artery lesions received a significantly higher glucocorticoid daily dose after 6-month follow-up.nnnCONCLUSIONnInhibiting the proliferation with macitentan, combined with glucocorticoids, might be a promising therapeutic approach for patients with GCA.


Environmental Pollution | 2015

How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure

Corinne Bardot; Pascale Besse-Hoggan; Louis Carles; Morgane Le Gall; Guilhem Clary; Philippe Chafey; Christian Federici; Cédric Broussard; Isabelle Batisson

Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.


Journal of Virology | 2015

Quantitative Proteomics Identifies Host Factors Modulated during Acute Hepatitis E Virus Infection in the Swine Model

Sophie Rogée; Morgane Le Gall; Philippe Chafey; Jérôme Bouquet; Nathalie Cordonnier; Christian Frederici; Nicole Pavio

ABSTRACT Hepatitis E virus (HEV) causes acute enterically transmitted hepatitis. In industrialized countries, it is a zoonotic disease, with swine being the major reservoir of human HEV contamination. The occurrence and severity of the disease are variable, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In the absence of a robust cell culture system or small-animal models, the HEV life cycle and pathological process remain unclear. To characterize HEV pathogenesis and virulence mechanisms, a quantitative proteomic analysis was carried out to identify cellular factors and pathways modulated during acute infection of swine. Three groups of pigs were inoculated with three different strains of swine HEV to evaluate the possible role of viral determinants in pathogenesis. Liver samples were analyzed by a differential proteomic approach, two-dimensional difference in gel electrophoresis, and 61 modulated proteins were identified by mass spectroscopy. The results obtained show that the three HEV strains replicate similarly in swine and that they modulate several cellular pathways, suggesting that HEV impairs several cellular processes, which can account for the various types of disease expression. Several proteins, such as heterogeneous nuclear ribonucleoprotein K, apolipoprotein E, and prohibitin, known to be involved in other viral life cycles, were upregulated in HEV-infected livers. Some differences were observed between the three strains, suggesting that HEVs genetic variability may induce variations in pathogenesis. This comparative analysis of the liver proteome modulated during infection with three different strains of HEV genotype 3 provides an important basis for further investigations on the factors involved in HEV replication and the mechanism of HEV pathogenesis. IMPORTANCE Hepatitis E virus (HEV) is responsible for acute hepatitis, with clinical symptoms ranging from asymptomatic to self-limiting acute hepatitis, chronic infection, or fulminant hepatitis. In industrialized countries, HEV is considered an emerging zoonotic disease, with swine being the principal reservoir for human contamination. The viral and cellular factors involved in the replication and/or pathogenesis of HEV are still not fully known. Here we report that several cellular pathways involved in cholesterol and lipid metabolism or cell survival were modulated during HEV infection in the swine model. Moreover, we observed a difference between the different swine strains, suggesting that HEVs genetic variability could play a role in pathogenesis. We also identified some proteins known to be involved in other viral cycles. Our study provides insight into the mechanisms modulated during HEV infection and constitutes a useful reference for future work on HEV pathogenesis and virulence.


Proteomics | 2016

Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

Alexis Régent; Kim Heang Ly; S. Lofek; Guilhem Clary; Mathieu C. Tamby; Nicolas Tamas; Christian Federici; Cédric Broussard; Philippe Chafey; Emmanuelle Liaudet-Coopman; Marc Humbert; Frédéric Perros; Luc Mouthon

Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH‐SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or −1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH‐SMC (fold change 1.5≤ or −1.5≥, p < 0.05). HUASMC expressed increased amount of α‐smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH‐SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH‐SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH‐SMC. There was a trend toward reduced proliferation of PAH‐SMC with paxillin‐si‐RNA and increased proliferation with ELAVL1‐siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH‐SMC proliferation.

Collaboration


Dive into the Philippe Chafey's collaboration.

Top Co-Authors

Avatar

Cédric Broussard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Guilhem Clary

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Mouthon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

S. Lofek

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Alexis Régent

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Humbert

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Mathieu C. Tamby

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge