Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Compère is active.

Publication


Featured researches published by Philippe Compère.


Nature Genetics | 2009

INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse.

Monique Jacoby; James J. Cox; Stéphanie Gayral; Daniel J. Hampshire; Mohammed Ayub; Marianne Blockmans; Eileen Pernot; Marina V Kisseleva; Philippe Compère; Serge N. Schiffmann; Fanni Gergely; John H. Riley; David Perez-Morga; C. Geoffrey Woods; Stéphane Schurmans

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor α (PDGFRα) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction.


Applied and Environmental Microbiology | 2002

Characterization of Serracin P, a Phage-Tail-Like Bacteriocin, and Its Activity against Erwinia amylovora, the Fire Blight Pathogen

Abdelhamid Jabrane; Ahmed Sabri; Philippe Compère; Philippe Jacques; Isabel Vandenberghe; Jozef Van Beeumen; Philippe Thonart

ABSTRACT Serratia plymithicum J7 culture supernatant displayed activity against many pathogenic strains of Erwinia amylovora, the causal agent of the most serious bacterial disease of apple and pear trees, fire blight, and against Klebsiella pneumoniae, Serratia liquefaciens, Serratia marcescens, and Pseudomonas fluorescens. This activity increased significantly upon induction with mitomycin C. A phage-tail-like bacteriocin, named serracin P, was purified from an induced culture supernatant of S. plymithicum J7. It was found to be the only compound involved in the antibacterial activity against sensitive strains. The N-terminal amino acid sequence analysis of the two major subunits (23 and 43 kDa) of serracin P revealed high homology with the Fels-2 prophage of Salmonella enterica, the coliphages P2 and 168, the φCTX prophage of Pseudomonas aeruginosa, and a prophage of Yersinia pestis. This strongly suggests a common ancestry for serracin P and these bacteriophages.


Journal of Structural Biology | 2010

Structure, composition and mechanical relations to function in sea urchin spine

Claire Moureaux; Alberto Pérez-Huerta; Philippe Compère; Wenzhong Zhu; Thierry Leloup; Maggie Cusack; Philippe Dubois

Sea urchins have characteristic spines that fulfil critical functions. Several studies revealed marked spine internal heterogeneities at different structural levels despite the single-crystal character of the spines. Most of these studies did not speculate about the functional meaning of these heterogeneities. Spine heterogeneities were investigated in the sea urchin Paracentrotuslividus and their possible functional implications discussed. Spines mainly show two morphological parts: the base, made of a meshwork stereom, and the shaft, with longitudinal plain septa and a central core of meshwork stereom. Electron Backscatter Diffraction showed no difference in crystallite orientation between the two structures. Atomic Absorption Spectrometry and Energy dispersive X-ray analysis revealed that Mg was not uniformly distributed in the spine. Mg concentration is higher in the inner part of the septa than in the septum outer part. Furthermore, a cyclic pattern of Mg concentration in septa was observed. This is suggested to be linked to the spine ontogeny. Nano- and microindentation analyses revealed that the septa have higher stiffness and hardness than the meshwork stereom and that septum stiffness and hardness present different trends in longitudinal and transverse section. These mechanical heterogeneities may have an adaptive functional value.


International Journal of Pharmaceutics | 2009

Development of a new topical system: Drug-in-cyclodextrin-in-deformable liposome

Aline Gillet; Angeliki Grammenos; Philippe Compère; Brigitte Evrard; Géraldine Piel

A new delivery system for cutaneous administration combining the advantages of cyclodextrin inclusion complexes and those of deformable liposomes was developed, leading to a new concept: drug-in-cyclodextrin-in-deformable liposomes. Deformable liposomes made of soybean phosphatidylcholine (PC) or dimyristoylphosphatidylcholine (DMPC) and sodium deoxycholate as edge activator were compared to classical non-deformable liposomes. Liposomes were prepared by the film evaporation method. Betamethasone, chosen as the model drug, was encapsulated in the aqueous cavity of liposomes by the use of cyclodextrins. Cyclodextrins allow an increase in the aqueous solubility of betamethasone and thus, the encapsulation efficiency in liposome vesicles. Liposome size, deformability and encapsulation efficiency were calculated. The best results were obtained with deformable liposomes made of PC in comparison with DMPC. The stability of PC vesicles was evaluated by measuring the leakage of encapsulated calcein on the one hand and the leakage of encapsulated betamethasone on the other hand. In vitro diffusion studies were carried out on Franz type diffusion cells through polycarbonate membranes. In comparison with non-deformable liposomes, these new vesicles showed improved encapsulation efficiency, good stability and higher in vitro diffusion percentages of encapsulated drug. They are therefore promising for future use in ex vivo and in vivo experiments.


International Journal of Pharmaceutics | 2011

Liposome surface charge influence on skin penetration behaviour

Aline Gillet; Philippe Compère; Frédéric Lecomte; Pascale Hubert; Emilie Ducat; Brigitte Evrard; Géraldine Piel

Vesicular systems have shown their ability to increase dermal and transdermal drug delivery. Their mechanism of drug transport into and through the skin has been investigated but remains a much debated question. Several researchers have outlined that drug penetration can be influenced by modifying the surface charge of liposomes. In the present work we study the influence of particle surface charge on skin penetration. The final purpose is the development of a carrier system which is able to enhance the skin delivery of two model drugs, betamethasone and betamethasone dipropionate. Liposomes were characterised by their size, morphology, zeta potential, encapsulation efficiency and stability. Ex vivo diffusion studies using Franz diffusion cells were performed. Confocal microscopy was performed to visualise the penetration of fluorescently labelled liposomes into the skin. This study showed the potential of negatively charged liposomes to enhance the skin penetration of betamethasone and betamethasone dipropionate.


Tissue & Cell | 1987

Elaboration and ultrastructural changes in the pore canal system of the mineralized cuticle of Carcinus maenas during the moulting cycle

Philippe Compère; Gerhard Goffinet

Two basic structural components are concerned in the elaboration of the pore canal system in the mineralized cuticle of the decapod crab Carcinus maenas: tubular cytoplasmic extensions originating from epidermis and vertical fibres. These components are present from the moment the first procuticular materials of the new cuticle are laid down but their organization varies according to a precise schedule during the further moult cycle stages. Cytoplasmic extensions form a complicated branching system connecting the epidermal layer with all regions of the cullcular compartment, at least transitorily. During the moult cycle the prolongation of this cellular system appears to result from two concomitant but opposite phenomena. Before ecdysis the growth of cell extensions in the proximal cuticular layers prevails over their regression at the distal level. During the post-moult period these phenomena are reversed in importance so that the pore canal system is without cytoplasmic material as soon as intermoult starts. The depositing of vertical fibres takes place in close contact with the proximal cell extension plasma membrane, which never bears dense plaques. As moult stages progress, they are gradually organized into twisted sheaths that persist throughout the intermoult. Incidentally, some fibres invade the pore canal lumen freed from cell extensions. Some aspects regarding the fine organization, the chemical composition and the functional significance of both epidermal tubular extensions or vertical fibres are also discussed in the light of previous investigations carried out on crustaceans and in other arthropods.


Tissue & Cell | 1987

Ultrastructural shape and three-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcinus maenas

Philippe Compère; Gerhard Goffinet

Two main self-contained canal systems are present in the crab mineralized cuticle. The first, or fibre canal system, is constituted by simple, unbranched vertical canals containing axially running fibres in close association with myoepidermal junctions. The second, or pore canal system, is composed of procuticular pore canals and epicuticular channels that prolong the procuticular canals. In opposition to widespread opinion, pore canals make up a three-dimensional branched system extending from the apical plasma membrane of the epidermis up to the epicuticle. Branching occurs by projections of lateral horizontal from the vertical canals at the lower level of the pigmented layer and by innumerable ramifications of epicuticular canals. In agreement with Nevilles model for insects, vertical procuticular pore canals of crustacean mineralized cuticle, and also fibre canals, exhibit a twisted ribbon structure reflecting the helicoidal arrangement of the horizontal chitin-protein microfibrils.


Deep-sea Research Part I-oceanographic Research Papers | 2003

Mineralogical gradients associated with alvinellids at deep-sea hydrothermal vents

Magali Zbinden; Nadine Le Bris; Philippe Compère; Isabelle Martinez; François Guyot; Françoise Gaill

Alvinella pompejana and Alvinella caudata live in organic tubes on active sulphide chimney walls at deep-sea hydrothermal vents. These polychaete annelids are exposed to extreme thermal and chemical gradients and to intense mineral precipitation. This work points out that mineral particles associated with Pompeii worm (A. pompejana and A. caudata) tubes constitute useful markers for evaluating the chemical characteristics of their micro-environment. The minerals associated with these worm tubes were analysed on samples recovered from an experimental alvinellid colony, at different locations in the vent fluid–seawater interface. Inhabited tubes from the most upper and lower parts of the colony were analysed by light and electron microscopies, X-ray microanalysis and X-ray diffraction. A change was observed from a Fe–Zn–S mineral assemblage to a Zn–S assemblage at the millimeter scale from the outer to the inner face of a tube. A similar gradient in proportions of minerals was observed at a decimeter scale from the lower to the upper part of the colony. The marcasite/pyrite ratio of iron disulphides also displays a steep decrease along the few millimeters adjacent to the external tube surface. The occurrence of these gradients indicates that the micro-environment within the tube differs from that outside the tube, and suggests that the tube wall acts as an efficient barrier to the external environment.


Histochemistry and Cell Biology | 1998

Ultrastructure and cytochemistry of the early calcification site and of its mineralization organic matrix in Paracentrotus lividus (Echinodermata: Echinoidea)

Laurent Ameye; Philippe Compère; Jean Dille; Philippe Dubois

Abstract The ultrastructure and cytochemistry of skeleton formation sites prior to mineralization are described for the first time in echinoderms. These early sites are intracellular vacuoles located in syncytial pseudopodia of skeleteton-forming cells. They contain a mineralization organic matrix, which shows a calcium-binding ability and is framed in a tridimensional structure made of concentric layers bridged by radial threads. This organic matrix presents repetitive structures which could be implicated in mineralization control. Both the tridimensional organization of the organic matrix and its framing, before mineralization starts, question the current theories which suggest that the echinoderm organic matrix is soluble at the onset of mineralization and adsorbs on the forming crystal.


Diatom Research | 1991

NUPELA GILUWENSIS GEN. & SPEC. NOV. A NEW GENUS OF NAVICULOID DIATOMS

Wim Vyverman; Philippe Compère

A new genus of naviculoid diatoms is described from subalpine tarns on Mount Giluwe (Papua New Guinea). Its relationship to other groups is discussed.

Collaboration


Dive into the Philippe Compère's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Françoise Gaill

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge