Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Denoel is active.

Publication


Featured researches published by Philippe Denoel.


Vaccine | 2000

Developing a nontypeable Haemophilus influenzae (NTHi) vaccine

Jan Poolman; Lauren O. Bakaletz; Allan W. Cripps; Philippe Denoel; Arne Forsgren; Jennelle M. Kyd; Yves Lobet

There is a current high demand for nontypable Haemophilus influenzae (NTHi) vaccines. Various options for the composition of such vaccines are possible. Decisions about the vaccine composition have to take into account the antigenic variability of NTHi, so even complex immunogens such as whole bacteria would preferentially have a tailor-made antigenic composition. We will present a summary of NTHi vaccine development, describing research efforts from SmithKline Beecham and other laboratories. Currently, major (P1, P2, P4, P5) and minor (P6, D15, TbpA/B, ellipsis) outer membrane proteins, LPS, adhesins (HMW, Hia, pili, P5) are being studied. Preclinical results with LPD, P5 (LB1) and OMP26 from our laboratories will be described including the use of animal models of otitis and lung infection.


Infection and Immunity | 2007

Additive and Synergistic Bactericidal Activity of Antibodies Directed against Minor Outer Membrane Proteins of Neisseria meningitidis

Vincent Weynants; Christiane Feron; Karine Goraj; Martine P. Bos; Philippe Denoel; Vincent Verlant; Jan Tommassen; Ian R. Peak; Ralph C. Judd; Michael P. Jennings; Jan Poolman

ABSTRACT Neisseria meningitidis serogroup B is a major cause of bacterial meningitis in younger populations. The available vaccines are based on outer membrane vesicles obtained from wild-type strains. In children less than 2 years old they confer protection only against strains expressing homologous PorA, a major, variable outer membrane protein (OMP). We genetically modified a strain in order to eliminate PorA and to overproduce one or several minor and conserved OMPs. Using a mouse model mimicking childrens PorA-specific bactericidal activity, it was demonstrated that overproduction of more than one minor OMP is required to elicit antibodies able to induce complement-mediated killing of strains expressing heterologous PorA. It is concluded that a critical density of bactericidal antibodies needs to be reached at the surface of meningococci to induce complement-mediated killing. With minor OMPs, this threshold is reached when more than one antigen is targeted, and this allows cross-protection.


Infection and Immunity | 2011

Preclinical Evaluation of the Pht Proteins as Potential Cross-Protective Pneumococcal Vaccine Antigens

Fabrice Godfroid; Philippe Hermand; Vincent Verlant; Philippe Denoel; Jan Poolman

ABSTRACT Current pneumococcal vaccines are composed of capsular polysaccharides (PS) of various serotypes, either as free PS or as protein-PS conjugates. The use of pneumococcus protein antigens that are able to afford protection across the majority of serotypes is envisaged as a relevant alternative and/or complement to the polysaccharides. In this context, based on several studies, the Pht protein family emerged as relevant vaccine candidates. The purpose of the present study was to evaluate the Pht protein family in several preclinical mouse models. Immunization with these antigens was compared with immunization with other pneumococcal antigens, such as CbpA, PspA, and PsaA. In a nasopharyngeal colonization model and in a lung colonization model, the Phts were found to be superior to the other candidates in terms of efficacy of protection and serotype coverage. Likewise, vaccination with PhtD allowed higher animal survival rates after lethal intranasal challenge. Finally, a passive transfer model in which natural anti-PhtD human antibodies were transferred into mice demonstrated significant protection against lethal intranasal challenge. This indicates that natural anti-PhtD human antibodies are able to protect against pneumococcal infection. Our findings, together with the serotype-independent occurrence of the Phts, designate this protein family as valid candidate antigens to be incorporated in protein-based pneumococcal vaccines.


Veterinary Microbiology | 1996

Infection of cattle with Yersinia enterocolitica O:9 a cause of the false positive serological reactions in bovine brucellosis diagnostic tests

Vincent Weynants; Anne Tibor; Philippe Denoel; Claude Saegerman; Jacques Godfroid; Pierre Thiange; Jean-Jacques Letesson

During the last four years, an increasing number of cattle herds were classified positive by brucellosis screening tests in areas of Belgium and France free of the disease. No clinical symptom of brucellosis was reported in these animals and no Brucella abortus strains were isolated. After two years, no brucellosis outbreak was registered in all of the herds concerned. On this basis, all the serological reactions observed were classified as false positive. An ELISA using Yersinia Outer membrane Proteins (YOPs) as antigens was developed in order to discriminate between a Yersinia enterocolitica O:9 infection and a Brucella abortus infection. Antibodies against YOPs were detected in sera from Y. enterocolitica O:9 experimentally infected cattle (n = 4) but not in sera from B. abortus experimentally infected cattle (n = 4). In a field study, 66.7% of the 174 serum samples from cattle presenting false positive serological reactions showed anti-YOPs antibodies whereas only 10% of 454 sera, classified negative by the brucellosis screening tests, showed anti-YOPs antibodies. Our results suggest that infections with Y. enterocolitica O:9 may cause false positive reactions in brucellosis testing.


Vaccine | 2011

A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae.

Philippe Denoel; Mario T. Philipp; Lara A. Doyle; Dale S. Martin; Georges Carletti; Jan Poolman

Infections caused by Streptococcus pneumoniae are a major cause of mortality throughout the world. Protein-based pneumococcal vaccines are envisaged to replace or complement the current polysaccharide-based vaccines. In this context, detoxified pneumolysin (dPly) and pneumococcal histidine triad protein D (PhtD) are two potential candidates for incorporation into pneumococcal vaccines. In this study, the protective efficacy of a PhtD-dPly vaccine was evaluated in a rhesus macaque (Macaca mulatta) model of pneumonia. The animals were immunized twice with 10 μg of PhtD and 10 μg of dPly formulated in the Adjuvant System AS02 or with AS02 alone, before they were challenged with a 19F pneumococcal strain. The survival was significantly higher in the protein-vaccinated group and seemed to be linked to the capacity to greatly reduce bacterial load within the first week post-challenge. Vaccination elicited high concentrations of anti-PhtD and anti-Ply antibodies and a link was found between survival and antibody levels. In conclusion, AS02-adjuvanted PhtD-dPly vaccine protects against S. pneumoniae-induced pneumonia. It is probable that the protection is at least partially mediated by PhtD- and Ply-specific antibodies.


Infection and Immunity | 2009

Genetically Modified L3,7 and L2 Lipooligosaccharides from Neisseria meningitidis Serogroup B Confer a Broad Cross-Bactericidal Response

Vincent Weynants; Philippe Denoel; Nathalie Devos; D. Janssens; Christiane Feron; Karine Goraj; Patricia Marie Momin; D. Monnom; Christine Tans; A. Vandercammen; F. Wauters; Jan Poolman

ABSTRACT Currently available Neisseria meningitidis serogroup B (MenB) vaccines are based on outer membrane vesicles (OMVs) that are obtained from wild-type strains. They are purified with the aim of decreasing the lipooligosaccharide (LOS) content and hence reduce the reactogenicity of the vaccine even though LOS is a potential protective antigen. In <2-year-old children, these MenB vaccines confer protection only against strains expressing homologous PorA, a major and variable outer membrane protein. Our objective was to develop a safe LOS-based vaccine against MenB. To this end, we used modified porA knockout strains expressing genetically detoxified (msbB gene-deleted) L2 and L3,7 LOSs, allowing the production of LOS-enriched OMVs. The vaccine-induced antibodies were found to be bactericidal against nearly all invasive strains, irrespective of capsular serogroup. In addition, we have also demonstrated that LOS lacking the terminal galactose (with a lgtB mutation; truncated L3 LOS), but not LOS produced without the galE gene, induced a bactericidal antibody response in mice similar to that seen for LOS containing the full lacto-N-neotetraose (L3,7 LOS). In conclusion, a bivalent detoxified LOS OMV-based vaccine demonstrated the potential to afford a broad cross-protection against meningococcal disease.


Journal of Medical Microbiology | 1997

Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB.

Philippe Denoel; T.K.O. Vo; Vincent Weynants; Anne Tibor; Dominique Gilson; Michel S. Zygmunt; Joseph N. Limet; Jean-Jacques Letesson

Brucellergene is a commercial allergen prepared from Brucella melitensis strain B115 and containing at least 20 cytoplasmic proteins. These proteins were separated by SDS-PAGE. The unstained gel was divided into 18 fractions and proteins were eluted from the gel fractions. The capacity of the separated proteins to elicit delayed-type hypersensitivity (DTH) in infected guinea-pigs or to induce the production of interferon-gamma (IFN-gamma) by blood cells from infected cattle was evaluated. The biological activity of the corresponding protein fractions blotted on to nitrocellulose was measured in a lymphocyte blastogenesis assay. Among the 18 fractions tested, two-spanning the mol. wt ranges 17-22 (fraction 8) and 35-42-kDa (fraction 17)-showed the maximum biological activity in the three tests. These fractions contain two antigens, the Brucella bacterioferritin (BFR) and P39 proteins. Both proteins are good candidates for the detection of cellular immunity to Brucella.


Vaccine | 2008

Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model.

Nico Marr; David C. Oliver; Vincianne Laurent; Jan Poolman; Philippe Denoel; Rachel C. Fernandez

This study examined the vaccine potential of the autotransporter protein BrkA of Bordetella pertussis in the sublethal intranasal murine respiratory challenge model of infection. Five different acellular pertussis (Pa) vaccines, containing different pertussis-component antigens but all comprizing diphtheria (D) and tetanus (T) toxoids, were tested. A two-pertussis-component DTPa vaccine containing pertussis toxoid (PT) and filamentous hemagglutinin (FHA) induced only limited bacterial clearance. However, a three-pertussis-component DTPa vaccine containing PT, FHA and a recombinant BrkA protein (rBrkA) was found to be as efficacious in protecting mice against colonization by B. pertussis strains Tohama I and 18-323 as the commercial Infanrixtrade mark vaccine that also includes PT and FHA but pertactin (PRN) instead of rBrkA. Vaccination of mice with rBrkA as the only B. pertussis antigen did not protect against colonization by B. pertussis. We also demonstrated that BrkA is ubiquitously expressed by highly prevalent clinical isolates of B. pertussis and suggest that new acellular pertussis vaccine formulations that include BrkA have equivalent efficacy as currently available DTPa vaccines against B. pertussis infections.


FEBS Letters | 1995

Cloning and sequencing of the bacterioferritin gene of Brucella melitensis 16M strain

Philippe Denoel; Michel S. Zygmunt; Vincent Weynants; Anne Tibor; Bernadette Lichtfouse; Pascal Briffeuil; Joseph N. Limet; Jean-Jacques Letesson

The 40 N‐terminal amino acids of the 20 kDa antigen A2 from Brucella melitensis were sequenced and showed important similarities with 4 bacterioferritins. A monoclonal antibody raised against this antigen cross‐reacted with Escherichia coli bacterioferritin. Hybridization of two sets of degenerate primers with B. melitensis HindIII‐digested genomic DNA identified a 3.8 kb fragment. This fragment was shown to contain a bacterioferritin gene (bfr) encoding a 161‐amino acid protein. The sequence of the Brucella bacterioferritin is 69% similar to that of E. coli, and many of the ferroxidase centre and haem‐ligation residues are conserved.


Infection and Immunity | 2014

Protein Antigens Increase the Protective Efficacy of a Capsule-Based Vaccine against Staphylococcus aureus in a Rat Model of Osteomyelitis

Santiago M. Lattar; Mariángeles Noto Llana; Philippe Denoel; Sophie Germain; Fernanda R. Buzzola; Jean C. Lee; Daniel O. Sordelli

ABSTRACT Staphylococcus aureus is an invasive bacterial pathogen, and antibiotic resistance has impeded adequate control of infections caused by this microbe. Moreover, efforts to prevent human infections with single-component S. aureus vaccines have failed. In this study, we evaluated the protective efficacy in rats of vaccines containing both S. aureus capsular polysaccharides (CPs) and proteins. The serotypes 5 CP (CP5) and 8 CP (CP8) were conjugated to tetanus toxoid and administered to rats alone or together with domain A of clumping factor A (ClfA) or genetically detoxified alpha-toxin (dHla). The vaccines were delivered according to a preventive or a therapeutic regimen, and their protective efficacy was evaluated in a rat model of osteomyelitis. Addition of dHla (but not ClfA) to the CP5 or CP8 vaccine induced reductions in bacterial load and bone morphological changes compared with immunization with either conjugate vaccine alone. Both the prophylactic and therapeutic regimens were protective. Immunization with dHla together with a pneumococcal conjugate vaccine used as a control did not reduce staphylococcal osteomyelitis. The emergence of unencapsulated or small-colony variants during infection was negligible and similar for all of the vaccine groups. In conclusion, addition of dHla to a CP5 or CP8 conjugate vaccine enhanced its efficacy against S. aureus osteomyelitis, indicating that the inclusion of multiple antigens will likely enhance the efficacy of vaccines against both chronic and acute forms of staphylococcal disease.

Collaboration


Dive into the Philippe Denoel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge