Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Dubuisson is active.

Publication


Featured researches published by Philippe Dubuisson.


International Journal of Remote Sensing | 1999

Atmospheric correction over land for MERIS

Richard Santer; V. Carrere; Philippe Dubuisson; Jean-Claude Roger

A three-stage atmospheric correction is proposed for the Medium Resolution Imaging Spectrometer (MERIS) from a validated formulation of the signal. We correct first for the gaseous transmittance. Assuming the ozone correction is well defined, we illustrate the need to include a correction for water vapour continuum which covers most of the MERIS bands. The water vapour transmittance can be computed from the water vapour content obtained from a twoband ratio at 900nm and 890nm. We demonstrate that a direct association between the transmittance in a given band and the two band ratio is more accurate due to the removal of the coupling between absorption and scattering. Secondly, the Rayleigh correction depends on the barometric pressure determined here from a two band ratio method with the oxygen A band. Good accuracy is obtained for the pressure when accounting for the coupling between scattering and gas absorption, which mostly depends on the surface reflectance. The Rayleigh reflectance is computed from a...


Journal of Applied Meteorology and Climatology | 2012

Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part I: Effective Emissivity and Optical Depth

Anne Garnier; Jacques Pelon; Philippe Dubuisson; Michaël Faivre; Olivier Chomette; Nicolas Pascal; David P. Kratz

The paper describes the operational analysis of the Imaging Infrared Radiometer (IIR) data, which have been collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission for the purpose of retrieving high-altitude (above 7 km) cloud effective emissivity and optical depth that can be used in synergy with the vertically resolved Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. After an IIR scene classification is built under the CALIOP track, the analysis is applied to features detected by CALIOP when found alone in the atmospheric column or when CALIOP identifies an opaque layer underneath. The fast-calculation radiative transfer (FASRAD) model fed by ancillary meteorological and surface data is used to compute the different components involved in the effective emissivity retrievals under the CALIOP track. The track analysis is extended to the IIR swath using homogeneity criteria that are based on radiative equivalence. The effective optical depth at 12.05 m mi s shown to be a good proxy for about one-half of the cloud optical depth, allowing direct comparisons with other databases in the visible spectrum. A step-by-step quantitative sensitivity and performance analysis is provided. The method is validated through comparisons of collocated IIR and CALIOP optical depths for elevated single-layered semitransparent cirrus clouds, showing excellent agreement (within 20%) for values ranging from 1 down to 0.05. Uncertainties have been determined from the identified error sources. The optical depth distribution of semitransparent clouds is found to have a nearly exponential shape with a mean value of about 0.5–0.6.


Journal of Geophysical Research | 2008

Aerosol direct radiative forcing over Djougou (northern Benin) during the African Monsoon Multidisciplinary Analysis dry season experiment (Special Observation Period-0)

Michel Mallet; Véronique Pont; Catherine Liousse; L. Gomes; Jacques Pelon; S. Osborne; James M. Haywood; Jean-Claude Roger; Philippe Dubuisson; Armand Mariscal; V. Thouret; Philippe Goloub

The purpose of this work is to investigate the direct radiative forcing of aerosols over the supersite of Djougou (northern Benin) during the African Monsoon Multidisciplinary Analyses dry season experiment. We focus our simulations on the top of atmosphere, bottom of atmosphere, and atmosphere radiative forcings. During the dry season period, Sun photometer measurements indicate a rather turbid atmosphere with a mean aerosol optical depth for the overall period of 0.78 ± 0.24 (at 440 nm). The aerosol absorption coefficient estimated at the surface ranged between 2.3 and 37.3 Mm−1 (mean value 15.2 ± 10.6 Mm−1 at 520 nm) and the scattering coefficient between 44.5 and 232.3 Mm−1 (mean 145 ± 59 Mm−1 at 520 nm). This leads to a single scattering albedo of between 0.81 and 0.98 (at 520 nm) with a mean (and standard deviation) value of 0.91 ± 0.05, indicating moderately absorbing aerosols. In parallel, micropulse lidar measurements indicate the presence of two distinct aerosol layers, with a first one located between the surface and 1 km and a second one located above 1.5–4.0 km. On the basis of surface and aircraft observations, sunphotometer measurements, lidar profiles, and Moderate Resolution Imagaing Spectroradiometer sensor an estimation of the daily clear sky direct radiative forcing has been estimated for the 17–24 January 2006 period. Simulations indicate that aerosols reduce significantly the solar energy reaching the surface (mean ΔFBOA = −61.5 W/m2) by reflection to space (mean ΔFTOA = −18.4 W/m2) but predominantly by absorption of the solar radiation into the atmosphere (mean ΔFATM = +43.1 W/m2). The mean heating rate at the surface and within the elevated biomass burning layer is considerably enhanced by 1.50 and 1.90 K day−1, respectively.


Journal of Applied Meteorology and Climatology | 2013

Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part II: Effective Diameter and Ice Water Path

Anne Garnier; Jacques Pelon; Philippe Dubuisson; Ping Yang; Michaël Faivre; Olivier Chomette; Nicolas Pascal; Pat Lucker; Tim Murray

AbstractThis paper describes the version-3 level-2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. The analysis uses a multisensor split-window technique relying on the concept of microphysical index applied to the two pairs of channels (12.05, 10.6 μm) and (12.05, 8.65 μm) to retrieve cirrus microphysical properties (effective diameter, ice water path) at 1-km pixel resolution. Retrievals are performed for three crystal families selected from precomputed lookup tables identified as representative of the main relationships between the microphysical indices. The uncertainties in the microphysical indices are detailed and quantified, and the impact on the retrievals is simulated. The possible biases have been...


Monthly Weather Review | 2004

Improving Retrievals of Cirrus Cloud Particle Size Coupling Lidar and Three-Channel Radiometric Techniques

Marjolaine Chiriaco; H. Chepfer; Vincent Noel; Arnaud Delaval; M. Haeffelin; Philippe Dubuisson; Ping Yang

This study is intended to illustrate the potential advantage of combining lidar measurements and the split-window technique based on the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands for inferring the microphysical properties of cirrus clouds. The lidar returns are employed to detect cirrus clouds. The optical properties of nonspherical ice crystals computed from the state-of-the-art scattering computational methods are used for the present forward radiative transfer simulation that fully accounts for both gaseous absorption and multiple scattering processes in the atmosphere. A combination of the radiances at the three infrared (IR) bands with lidar backscatter returns cannot uniquely specify the effective size of ice crystals because of its dependence on the particle aspect ratios. To avoid the shortcoming associated with a potential multivalued retrieval, lidar depolarization observation is used to constrain the specification of the particle aspect ratio in the retrieval implementation based on a precalculated lookup library. The present methodology for inferring the microphysical properties of cirrus clouds is implemented for nine cases by using the measurements from a 532-nm lidar located at the Palaiseau, France, ground-based site and the infrared spectral bands from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra platform. It is shown that the three IR wavelengths are quite complementary in constraining the retrieval of the particle size, leading to a significant advance in comparison with two-channel techniques, whereas the aspect ratio constraint due to lidar depolarization reduces the uncertainty of retrieved particle size by more than 20% for 70% of the cases and more than 65% for 40% of the cloud cases.


Journal of Applied Meteorology and Climatology | 2007

Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE

Marjolaine Chiriaco; H. Chepfer; Patrick Minnis; M. Haeffelin; S. Platnick; D. Baumgardner; Philippe Dubuisson; Matthew J. McGill; Vincent Noel; Jacques Pelon; D. Spangenberg; Sunny Sun-Mack; G. Wind

This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earths Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Teledetection Atmospherique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.


Journal of Atmospheric and Oceanic Technology | 2003

A High-Accuracy Multiwavelength Radiometer for In Situ Measurements in the Thermal Infrared. Part II: Behavior in Field Experiments

Gérard Brogniez; Christophe Pietras; Michel Legrand; Philippe Dubuisson; Martial Haeffelin

The performances of the new conveyable low-noise infrared radiometer for measurements of atmosphere and ground surface targets, or CLIMAT, are presented for in situ measurements. For this, quantitative analyses were carried out on measurements performed with a prototype during various field experiments. The accuracy of the radiometric measurements controlled by using a field blackbody is estimated for severe environmental conditions. Two modes of operation and two types of targets are described. Ground-based measurements of the sky radiance are compared to radiative transfer calculations that use atmospheric profiles from radiosoundings as input parameters. Sea surface temperatures estimated from airborne CLIMAT measurements are compared to satellite retrievals. These experiments constitute a first set of quantitative tests of the CLIMAT radiometer for groundbased and airborne remote sensing applications. They demonstrate that CLIMAT can be considered for future studies on clouds and aerosols, sea water, and surface such as ice, vegetation, bare soil, and rocks.


Journal of Geophysical Research | 2001

Surface pressure estimates from satellite data in the oxygen A-band: Applications to the MOS sensor over land

Philippe Dubuisson; R. Borde; C. Schmechtig; Richard Santer

A fast method for the Apparent Pressure Retrieval (APR method) over land from satellite data, based on a two band ratio in the oxygen A-band (759-770 nm), is described. This method is devoted to the cloud detection and atmospheric corrections. Parameterizations are performed from line-by-line calculations assuming a pure absorbing medium. Moreover, we defined a corrective factor to account for scattering effects of the atmosphere. We validated this method with measurements of the MOS sensor (Modular Optoelectronic Scanner), whose spectral characteristics are appropriate. Comparisons with ECMWF (European Centre for Medium-Range Weather Forecasts) pressures showed the need to perform in-flight calibrations over a reference scene to account for spectral shifts of filter responses. Therefore we selected bright surfaces for the calibration, such as deserts, because of their major contribution to the satellite signal. After calibration the accuracy of the method is about 10 hPa over bright surfaces. Comparisons for various meteorological and geographical conditions showed that deviations between ECMWF pressures and MOS apparent pressures are generally less than 30 hPa using scattering corrections. These deviations are multiplied by 2 without correction. The APR method has been included in the cloud detection and atmospheric correction algorithms for the MOS data processing over land. Theoretical studies showed that the APR method is suitable for the cloud discrimination and that an error of 30 hPa on the surface pressure retrieval has no noticeable effect on the geophysical products of these algorithms, such as aerosol optical thickness or surface reflectance. Consequently, this method is potentially applicable to the retrieval of the apparent pressure over land with the MOS algorithms, as well as other similar satellite sensors such as the Medium Resolution Imaging Spectrometer.


Journal of Applied Meteorology and Climatology | 2010

Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL

Nicolas Ferlay; F. Thieuleux; Céline Cornet; Anthony B. Davis; Philippe Dubuisson; F. Ducos; Frederic Parol; Jerome Riedi; Claudine Vanbauce

Abstract New evidence from collocated measurements, with support from theory and numerical simulations, that multidirectional measurements in the oxygen A band from the third Polarization and Directionality of the Earth’s Reflectances (POLDER-3) instrument on the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite platform within the “A-Train” can help to characterize the vertical structure of clouds is presented. In the case of monolayered clouds, the standard POLDER cloud oxygen pressure product PO2 is shown to be sensitive to the cloud geometrical thickness H in two complementary ways: 1) PO2 is, on average, close to the pressure at the geometrical middle of the cloud layer (MCP) and methods are proposed for reducing the pressure difference PO2 − MCP and 2) the angular standard deviation of PO2 and the cloud geometrical thickness H are tightly correlated for liquid clouds. Accounting for cloud phase, there is thus the potential...


Journal of Applied Meteorology and Climatology | 2008

Sensitivity of Thermal Infrared Radiation at the Top of the Atmosphere and the Surface to Ice Cloud Microphysics

Philippe Dubuisson; V. Giraud; Jacques Pelon; Bertrand Cadet; Ping Yang

Abstract This paper reports on the sensitivity of the brightness temperatures associated with radiances at the surface and the top of the atmosphere, simulated for the Imaging Infrared Radiometer (IIR) 8.7-, 10.6-, and 12-μm channels under ice cloudy conditions, to the optical and microphysical properties of ice clouds. The 10.6- and 12-μm channels allow simultaneous retrieval of ice cloud optical thickness and effective particle size (Deff) less than 100 μm. It is illustrated that the particle shape and size distributions of ice crystals have noticeable effects on the brightness temperatures. Using the split window technique based on the 10.6- and 12-μm channels in conjunction with cloud properties assumed a priori, the authors show that the influence of the cloud microphysical properties can lead to differences on the order of ±10% and ±25% in retrieved effective particle sizes for small (Deff 40 μm), respectively. The impact of cloud model on retrieved optical thick...

Collaboration


Dive into the Philippe Dubuisson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Garnier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Fauchez

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge