Philippe Duchateau
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Duchateau.
Nucleic Acids Research | 2006
Julianne Smith; Sylvestre Grizot; Sylvain Arnould; Aymeric Duclert; Jean-Charles Epinat; Patrick Chames; Jesús Prieto; Pilar Redondo; Francisco J. Blanco; Jerónimo Bravo; Guillermo Montoya; Philippe Duchateau
Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.
Current Gene Therapy | 2011
George H. Silva; Laurent Poirot; Roman Galetto; Julianne Smith; Guillermo Montoya; Philippe Duchateau; Frédéric Paques
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus–based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Nucleic Acids Research | 2009
Sylvestre Grizot; Julianne Smith; Fayza Daboussi; Jesús Prieto; Pilar Redondo; Nekane Merino; Maider Villate; Séverine Thomas; Laetitia Lemaire; Guillermo Montoya; F.J. Blanco; Frédéric Pâques; Philippe Duchateau
Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.
Journal of Biological Chemistry | 2012
Julien Valton; Aurélie Dupuy; Fayza Daboussi; Séverine Thomas; Alan Marechal; Rachel Macmaster; Kevin Melliand; Alexandre Juillerat; Philippe Duchateau
Background: TALE-based technologies are poised to revolutionize the field of biotechnology; however, their sensitivity to cytosine methylation may drastically restrict their ranges of applications. Results: TALE repeat N* proficiently accommodates 5-methylated cytosine. Conclusion: Sensitivity of TALE to cytosine methylation can be overcome by using TALE repeat N*. Significance: Utilization of TALE repeat N* enables broadening the scope of TALE-based technologies. Within the past 2 years, transcription activator-like effector (TALE) DNA binding domains have emerged as the new generation of engineerable platform for production of custom DNA binding domains. However, their recently described sensitivity to cytosine methylation represents a major bottleneck for genome engineering applications. Using a combination of biochemical, structural, and cellular approaches, we were able to identify the molecular basis of such sensitivity and propose a simple, drug-free, and universal method to overcome it.
Nature | 2008
Pilar Redondo; Jesús Prieto; Inés G. Muñoz; Andreu Alibés; Francois Stricher; Luis Serrano; Jean-Pierre Cabaniols; Fayza Daboussi; Sylvain Arnould; Christophe Perez; Philippe Duchateau; Frédéric Paques; F.J. Blanco; Guillermo Montoya
Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases—such as homing endonucleases, also known as meganucleases—constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules—Amel3–Amel4 and Ini3–Ini4—cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.
Nature Communications | 2014
Fayza Daboussi; Sophie Leduc; Alan Marechal; Gwendoline Dubois; Valérie Guyot; Christophe Perez-Michaut; Alberto Amato; Angela Falciatore; Alexandre Juillerat; Marine Beurdeley; Daniel F. Voytas; Laurent Cavarec; Philippe Duchateau
Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.
Nature Communications | 2013
Marine Beurdeley; Fabian Bietz; Jin Li; Séverine Thomas; Thomas Stoddard; Alexandre Juillerat; Feng Zhang; Daniel F. Voytas; Philippe Duchateau; George H. Silva
Transcription activator-like effector nucleases are readily targetable ‘molecular scissors’ for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI nuclease domain. Here we report a significant improvement to the standard transcription activator-like effector nuclease architecture by leveraging the partially specific I-TevI catalytic domain to create a new class of monomeric, DNA-cleaving enzymes. In vivo yeast, plant and mammalian cell assays demonstrate that the half-size, single-polypeptide compact transcription activator-like effector nucleases exhibit overall activity and specificity comparable to currently available designer nucleases. In addition, we harness the catalytic mechanism of I-TevI to generate novel compact transcription activator-like effector nuclease-based nicking enzymes that display a greater than 25-fold increase in relative targeted gene correction efficacy.
Nucleic Acids Research | 2010
Sylvestre Grizot; Jean-Charles Epinat; Séverine Thomas; Aymeric Duclert; Sandra Rolland; Frédéric Pâques; Philippe Duchateau
Homing endonucleases have become valuable tools for genome engineering. Their sequence recognition repertoires can be expanded by modifying their specificities or by creating chimeric proteins through domain swapping between two subdomains of different homing endonucleases. Here, we show that these two approaches can be combined to create engineered meganucleases with new specificities. We demonstrate the modularity of the chimeric DmoCre meganuclease previously described, by successfully assembling mutants with locally altered specificities affecting both I-DmoI and I-CreI subdomains in order to create active meganucleases with altered specificities. Moreover these new engineered DmoCre variants appear highly specific and present a low toxicity level, similar to I-SceI, and can induce efficient homologous recombination events in mammalian cells. The DmoCre based meganucleases can therefore offer new possibilities for various genome engineering applications.
Journal of Gene Medicine | 2006
Agnès Gouble; Julianne Smith; Sylvia Bruneau; Christophe Perez; Valérie Guyot; Jean-Pierre Cabaniols; Sophie Leduc; Laurence Fiette; Patrick Ave; Béatrice Micheau; Philippe Duchateau
Sequence‐specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000‐fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double‐strand break (DSB)‐induced HR.
Nucleic Acids Research | 2011
Inés G. Muñoz; Jesús Prieto; Sunita Subramanian; Javier Coloma; Pilar Redondo; Maider Villate; Nekane Merino; Marco Marenchino; Marco D'Abramo; Francesco Luigi Gervasio; Sylvestre Grizot; Fayza Daboussi; Julianne Smith; Isabelle Chion-Sotinel; Philippe Duchateau; Andreu Alibés; François Stricher; Luis Serrano; Francisco J. Blanco; Guillermo Montoya
Homing endonucleases recognize long target DNA sequences generating an accurate double-strand break that promotes gene targeting through homologous recombination. We have modified the homodimeric I-CreI endonuclease through protein engineering to target a specific DNA sequence within the human RAG1 gene. Mutations in RAG1 produce severe combined immunodeficiency (SCID), a monogenic disease leading to defective immune response in the individuals, leaving them vulnerable to infectious diseases. The structures of two engineered heterodimeric variants and one single-chain variant of I-CreI, in complex with a 24-bp oligonucleotide of the human RAG1 gene sequence, show how the DNA binding is achieved through interactions in the major groove. In addition, the introduction of the G19S mutation in the neighborhood of the catalytic site lowers the reaction energy barrier for DNA cleavage without compromising DNA recognition. Gene-targeting experiments in human cell lines show that the designed single-chain molecule preserves its in vivo activity with higher specificity, further enhanced by the G19S mutation. This is the first time that an engineered meganuclease variant targets the human RAG1 locus by stimulating homologous recombination in human cell lines up to 265 bp away from the cleavage site. Our analysis illustrates the key features for à la carte procedure in protein-DNA recognition design, opening new possibilities for SCID patients whose illness can be treated ex vivo.