Philippe Etienne
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Etienne.
Journal of Experimental Botany | 2010
Mohamed Abdallah; Lucie Dubousset; Frédéric Meuriot; Philippe Etienne; J-C. Avice; Alain Ourry
Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the whole-plant and leaf rank level for plants grown during 35 d with 300 μM 34SO42– (control plants; +S) or with 15 μM 34SO42– (S-limited plants; –S). The results highlight that S-limited plants showed no significant differences either in whole-plant and leaf biomas or in N uptake, when compared with control plants. However, total S and 34S (i.e. deriving from S uptake) contents were greatly reduced for the whole plant and leaf after 35 d, and a greater redistribution of endogenous S from leaves to the benefit of roots was observed. The relative expression of tonoplast and plasmalemma sulphate transporters was also strongly induced in the roots. In conclusion, although S-limited plants had 20 times less mineral S than control plants, their development remained surprisingly unchanged. During S limitation, oilseed rape is able to recycle endogenous S compounds (mostly sulphate) from leaves to roots. However, this physiological adaptation may be effective only over a short time scale (i.e. vegetative growth).
Proteomics | 2009
Marie Desclos; Philippe Etienne; Laurent Coquet; Thierry Jouenne; Josette Bonnefoy; Raphaël Segura; Sandrine Reze; Alain Ourry; Jean-Christophe Avice
Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using 15N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence‐associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence‐associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.
Plant Physiology | 2008
Marie Desclos; Lucie Dubousset; Philippe Etienne; Françoise Le Cahérec; Hiroyushi Satoh; Josette Bonnefoy; Alain Ourry; Jean-Christophe Avice
Despite its water-soluble chlorophyll-binding protein (WSCP) function, the putative trypsin inhibitor (TI) activity of the Brassica napus drought 22 kD (BnD22) protein and its physiological function in young leaves during leaf nitrogen (N) remobilization promoted by stressful conditions remains an enigma. Therefore, our objectives were to determine (1) if BnD22 is related to the 19-kD TI previously detected in B. napus young leaves, and (2) if the levels of BnD22 transcripts, BnD22 protein, and TI activity in young leaves are associated with plant responses to stress conditions (N starvation and methyl jasmonate [MeJA] treatments) that are able to modulate leaf senescence. Compared to control, N starvation delayed initiation of senescence and induced 19-kD TI activity in the young leaves. After 3 d with MeJA, the 19-kD TI activity was 7-fold higher than the control. Using two-dimensional electrophoresis gel, TI activity, and electrospray ionization liquid chromatography tandem mass spectrometry analysis, it was demonstrated that two 19-kD proteins with isoelectric points 5.0 and 5.1 harboring TI activity correspond to BnD22 perfectly. BnD22 gene expression, TI activities, and BnD22 protein presented similar patterns. Using polyclonal anti-WSCP antibodies of Brassica oleracea, six polypeptides separated by two-dimensional electrophoresis were detected in young leaves treated with MeJA. Electrospray ionization liquid chromatography tandem mass spectrometry analysis of six polypeptides confirms their homologies with WSCP. Results suggest that BnD22 possesses dual functions (WSCP and TI) that lead to the protection of younger tissues from adverse conditions by maintaining metabolism (protein integrity and photosynthesis). By sustaining sink growth of stressed plants, BnD22 may contribute to a better utilization of recycling N from sources, a physiological trait that improves N-use efficiency.
Plant Physiology | 2008
Antonin Leblanc; Hugues Renault; Julien Lecourt; Philippe Etienne; Carole Deleu
Ethylene is a plant hormone that plays a major role in the elongation of both exploratory and root hair systems. Here, we demonstrate in Brassica napus seedlings that treatments with the ethylene precursor, aminocyclopropane carboxylic acid (ACC) and the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), cause modification of the dynamic processes of primary root and root hair elongation in a dose-dependent way. Moreover, restoration of root elongation in AVG-treated seedlings by 1 mm l-glutamate suggested that high concentrations of AVG affect root elongation through nonoverlapping ethylene metabolic pathway involving pyridoxal 5′-P-dependent enzymes of nitrate (N) metabolism. In this respect, treatments with high concentrations of ACC and AVG (10 μm) over 5 d revealed significant differences in relationships between root growth architecture and N uptake capacities. Indeed, if these treatments decreased severely the elongation of the exploratory root system (primary root and lateral roots) they had opposing effects on the root hair system. Although ACC increased the length and number of root hairs, the rate of N uptake and the transcript level of the N transporter BnNrt2.1 were markedly reduced. In contrast, the decrease in root hair length and number in AVG-treated seedlings was overcompensated by an increase of N uptake and BnNrt2.1 gene expression. These root architectural changes demonstrated that BnNrt2.1 expression levels were more correlated to the changes of the exploratory root system than the changes of the root hair system. The difference between treatments in N transporters BnNrt1.1 and BnNrt2.1 gene expression is discussed with regard to presumed transport functions of BnNrt1.1 in relation to root elongation.
Plant and Soil | 2012
Laëtitia Jannin; Mustapha Arkoun; Alain Ourry; Philippe Laîné; Didier Goux; Maria Garnica; Marta Fuentes; Sara San Francisco; Roberto Baigorri; Florence Cruz; Fabrice Houdusse; José-Maria Garcia-Mina; Jean-Claude Yvin; Philippe Etienne
Background & aimsWinter rapeseed (Brassica napus) is characterized by a low N recovery in seeds and requires high rates of fertilization to maintain yield. Its nutrient use efficiency could be improved by addition of a biostimulant such as humic acids whose physiological effects have been described previously in some plant species. However, to our knowledge, no study has focused on transcriptomic analyses to determine metabolic targets of this extract.MethodsA preliminary screening of ten humic acids revealed a significant effect of one of them (HA7) on rapeseed root growth. Microarray analysis was then used on HA7-treated or non-treated plants to characterize changes in gene expression that were further supported by physiological evidence.ResultsStimulation of nitrogen uptake (+15% in shoots and +108% in roots) and assimilation was found to be increased in a similar manner to growth while sulfate content (+76% in shoots and +137% in roots) was more strongly stimulated leading to higher sulfate accumulation. In parallel, microscopic analysis showed an enhancement of chloroplast number per cell.ConclusionIt is therefore suggested that HA7, which promotes plant growth and nutrient uptake, could be used as a supplementary tool to improve rapeseed nitrogen use efficiency.
Functional Plant Biology | 2007
Philippe Etienne; Marie Desclos; Lucie Le Gou; Julie Gombert; Josette Bonnefoy; Karine Maurel; Frédérik Le Dily; Alain Ourry; Jean-Christophe Avice
Brassica napus L. (oilseed rape) is an important crop plant characterised by low nitrogen (N) use efficiency. This is mainly due to a weak N recycling from leaves that is related to incomplete protein degradation. Assuming that protease inhibitors are involved throughout protein mobilisation, the goal of this study was to determine their role in the control of N mobilisation associated with leaf senescence. Results showed that a 19-kDa polypeptide exhibiting trypsin inhibitor (TI) activity presented an increased gradient from the older to the younger leaves. According to the SAG12/Cab gene expression profile, which is an indicator of leaf senescence, mature leaves of nitrate-deprived plants presented an earlier initiation of senescence and a decrease in protein concentration when compared with nitrate-replete plants. This coincided with disappearance of both TI activity and a reduction in the transcript level of the BnD22 gene (encoding a protein sharing homology with Künitz protease inhibitor). In young leaves of N-deprived plants, initiation of senescence was delayed; soluble protein concentration was maintained while both TI activity and BnD22 transcripts were high. This indicates that in oilseed rape growing under nitrate deprivation, the more efficient N recycling from mature leaves contributes to the maintenance of growth in young leaves. The data suggest a significant role for protease inhibitors in the regulation of proteolytic processes associated with N mobilisation during leaf senescence.
FEBS Letters | 2005
José Lequeu; Françoise Simon-Plas; Jérome Fromentin; Philippe Etienne; Anne-Sophie Petitot; Jean-Pierre Blein; Lydie Suty
Elicitation of defense reactions in tobacco by cryptogein, triggered a production of active oxygen species (AOS) via the NADPH oxidase, NtrbohD, and an accumulation of β1din, a defense induced β‐type subunit of 20S proteasome. The proteasome inhibitor, MG132, stimulated this AOS production. Tobacco cells transformed with sense constructs of β1din showed an inhibition of the AOS production following elicitin treatment, whereas the antisense transformed cells showed a strongly enhanced AOS production. In cells transformed with sense construct of β1din, the NtrbohD transcripts failed to be induced by cryptogein as observed in control and antisense transformed cells. Conversely, in tobacco cells transformed with antisense constructs for NtrbohD, β1din transcripts remained at a low level after elicitation. These results constitute the first demonstration of proteasome comprising β1din acting as a negative regulator of NtrbohD and contributes to the regulation of AOS generation during plant defense reactions.
BMC Plant Biology | 2015
Alexandra Girondé; Philippe Etienne; Jacques Trouverie; Alain Bouchereau; Françoise Le Cahérec; Laurent Leport; Mathilde Orsel; Marie-Françoise Niogret; Nathalie Nesi; Deleu Carole; Fabienne Soulay; Céline Masclaux-Daubresse; Jean-Christophe Avice
BackgroundOilseed rape is the third largest oleaginous crop in the world but requires high levels of N fertilizer of which only 50% is recovered in seeds. This weak N use efficiency is associated with a low foliar N remobilization, leading to a significant return of N to the soil and a risk of pollution. Contrary to what is observed during senescence in the vegetative stages, N remobilization from stems and leaves is considered efficient during monocarpic senescence. However, the contribution of stems towards N management and the cellular mechanisms involved in foliar remobilization remain largely unknown. To reach this goal, the N fluxes at the whole plant level from bolting to mature seeds and the processes involved in leaf N remobilization and proteolysis were investigated in two contrasting genotypes (Aviso and Oase) cultivated under ample or restricted nitrate supply.ResultsDuring seed filling in both N conditions, Oase efficiently allocated the N from uptake to seeds while Aviso favoured a better N remobilization from stems and leaves towards seeds. Nitrate restriction decreased seed yield and oil quality for both genotypes but Aviso had the best seed N filling. Under N limitation, Aviso had a better N remobilization from leaves to stems before the onset of seed filling. Afterwards, the higher N remobilization from stems and leaves of Aviso led to a higher final N amount in seeds. This high leaf N remobilization is associated with a better degradation/export of insoluble proteins, oligopeptides, nitrate and/or ammonia. By using an original method based on the determination of Rubisco degradation in the presence of inhibitors of proteases, efficient proteolysis associated with cysteine proteases and proteasome activities was identified as the mechanism of N remobilization.ConclusionThe results confirm the importance of foliar N remobilization after bolting to satisfy seed filling and highlight that an efficient proteolysis is mainly associated with (i) cysteine proteases and proteasome activities and (ii) a fine coordination between proteolysis and export mechanisms. In addition, the stem may act as transient storage organs in the case of an asynchronism between leaf N remobilization and N demand for seed filling.
Journal of Experimental Botany | 2012
Mustapha Arkoun; Xavier Sarda; Laëtitia Jannin; Philippe Laîné; Philippe Etienne; José-Maria Garcia-Mina; Jean-Claude Yvin; Alain Ourry
N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.
Journal of Experimental Botany | 2015
Alexandra Girondé; Marine Poret; Philippe Etienne; Jacques Trouverie; Alain Bouchereau; Françoise Le Cahérec; Laurent Leport; Mathilde Orsel; Marie-Françoise Niogret; Carole Deleu; Jean-Christophe Avice
Oilseed rape, a crop requiring a high level of nitogen (N) fertilizers, is characterized by low N use efficiency. To identify the limiting factors involved in the N use efficiency of winter oilseed rape, the response to low N supply was investigated at the vegetative stage in 10 genotypes by using long-term pulse-chase (15)N labelling and studying the physiological processes of leaf N remobilization. Analysis of growth and components of N use efficiency allowed four profiles to be defined. Group 1 was characterized by an efficient N remobilization under low and high N conditions but by a decrease of leaf growth under N limitation. Group 2 showed a decrease in leaf growth under low N supply that was associated with a low N remobilization efficiency under both N supplies despite a high remobilization of soluble proteins. In response to N limitation, Group 3 is characterized by an increase in N use efficiency and leaf N remobilization compared with high N that is not sufficient to sustain the leaf biomass production at a similar level to non-limited plants. Genotypes of Group 4 subjected to low nitrate were able to maintain leaf growth to the same level as under high N. The profiling approach indicated that enhancement of amino acid export and soluble protein degradation was crucial for N remobilization improvement. At the whole-plant level, N fluxes revealed that Group 4 showed a high N remobilization in source leaves combined with a better N utilization in young leaves. Consequently, an enhanced N remobilization limits N loss in fallen leaves, but this remobilized N needs to be efficiently utilized in young leaves to improve N use efficiency.