Philippe F.-X. Corvini
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe F.-X. Corvini.
Water Research | 2008
Markus Lenz; Eric Van Hullebusch; Gregor Hommes; Philippe F.-X. Corvini; Piet N.L. Lens
This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH=7.0) to remove selenium oxyanions from contaminated waters (790 microg Se L(-1)) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at different sulfate to selenate ratios, while another UASB was operated under methanogenic conditions for 132 days without sulfate in the influent. The selenate effluent concentrations in the sulfate-reducing and methanogenic reactor were 24 and 8 microg Se L(-1), corresponding to removal efficiencies of 97% and 99%, respectively. X-ray diffraction (XRD) analysis and sequential extractions showed that selenium was mainly retained as elemental selenium in the biomass. However, the total dissolved selenium effluent concentrations amounted to 73 and 80 microg Se L(-1), respectively, suggesting that selenate was partly converted to another selenium compound, most likely colloidally dispersed Se(0) nanoparticles. Possible intermediates of selenium reduction (selenite, dimethylselenide, dimethyldiselenide, H(2)Se) could not be detected. Sulfate reducers removed selenate at molar excess of sulfate to selenate (up to a factor of 2600) and elevated dissolved sulfide concentrations (up to 168 mg L(-1)), but selenium removal efficiencies were limited by the applied sulfate-loading rate. In the methanogenic bioreactor, selenate and dissolved selenium removal were independent of the sulfate load, but inhibited by sulfide (101 mg L(-1)). The selenium removal efficiency of the methanogenic UASB abruptly improved after 58 days of operation, suggesting that a specialized selenium-converting population developed in the reactor. This paper demonstrates that both sulfate-reducing and methanogenic UASB reactors can be applied to remove selenate from contaminated natural waters and anthropogenic waste streams, e.g. agricultural drainage waters, acid mine drainage and flue gas desulfurization bleeds.
Nature Communications | 2013
Alessandro Cumbo; Bernard Lorber; Philippe F.-X. Corvini; Wolfgang Meier; Patrick Shahgaldian
Major stumbling blocks in the production of fully synthetic materials designed to feature virus recognition properties are that the target is large and its self-assembled architecture is fragile. Here we describe a synthetic strategy to produce organic/inorganic nanoparticulate hybrids that recognize non-enveloped icosahedral viruses in water at concentrations down to the picomolar range. We demonstrate that these systems bind a virus that, in turn, acts as a template during the nanomaterial synthesis. These virus imprinted particles then display remarkable selectivity and affinity. The reported method, which is based on surface imprinting using silica nanoparticles that act as a carrier material and organosilanes serving as biomimetic building blocks, goes beyond simple shape imprinting. We demonstrate the formation of a chemical imprint, comparable to the formation of biosilica, due to the template effect of the virion surface on the synthesis of the recognition material.
Applied and Environmental Microbiology | 2007
B. Kolvenbach; N. Schlaich; Z. Raoui; J. Prell; S. Zühlke; A. Schäffer; F. P. Guengerich; Philippe F.-X. Corvini
ABSTRACT The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carbon-carbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary α-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary α-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type II ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl)phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18O2 atmosphere were performed. One atom of 18O2 was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary α-carbon.
Journal of Hazardous Materials | 2014
Patrícia J.M. Reis; Ana C. Reis; Benjamin Ricken; Boris A. Kolvenbach; Célia M. Manaia; Philippe F.-X. Corvini; Olga C. Nunes
This study aimed to isolate and characterize a microbial culture able to degrade sulfonamides. Sulfamethoxazole (SMX)-degrading microorganisms were enriched from activated sludge and wastewater. The resultant mixed culture was composed of four bacterial strains, out of which only Achromobacter denitrificans PR1 could degrade SMX. This sulfonamide was used as sole source of carbon, nitrogen and energy with stoichiometric accumulation of 3-amino-5-methylisoxazole. Strain PR1 was able to remove SMX at a rate of 73.6 ± 9.6 μmol SMX/gcell dryweighth. This rate more than doubled when a supplement of amino acids or the other members of the mixed culture were added. Besides SMX, strain PR1 was able to degrade other sulfonamides with anti-microbial activity. Other environmental Achromobacter spp. could not degrade SMX, suggesting that this property is not broadly distributed in members of this genus. Further studies are needed to shed additional light on the genetics and enzymology of this process.
Applied Microbiology and Biotechnology | 2012
Christoph A. Gasser; Gregor Hommes; Andreas Schäffer; Philippe F.-X. Corvini
Considerable effort has been dedicated to the chemical depolymerization of lignin, a biopolymer constituting a possible renewable source for aromatic value-added chemicals. However, these efforts yielded limited success up until now. Efficient lignin conversion might necessitate novel catalysts enabling new types of reactions. The use of multiple catalysts, including a combination of biocatalysts, might be necessary. New perspectives for the combination of bio- and inorganic catalysts in one-pot reactions are emerging, thanks to green chemistry-driven advances in enzyme engineering and immobilization and new chemical catalyst design. Such combinations could offer several advantages, especially by reducing time and yield losses associated with the isolation and purification of the reaction products, but also represent a big challenge since the optimal reaction conditions of bio- and chemical catalysis reactions are often different. This mini-review gives an overview of bio- and inorganic catalysts having the potential to be used in combination for lignin depolymerization. We also discuss key aspects to consider when combining these catalysts in one-pot reactions.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2008
Burkhard Schmidt; Jürgen Ebert; Marc Lamshöft; Brigitte Thiede; Ramona Schumacher-Buffel; Rong Ji; Philippe F.-X. Corvini; Andreas Schäffer
The fate of 14C-labeled sulfadiazine (14C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (Ap horizon of loamy sand, orthic luvisol; Ap horizon of silt loam, cambisol) amended with fresh and aged (6 months) 14C-manure [40 g kg−1 of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with 14C-SDZ. Mineralization of 14C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable 14C (ethanol-water, 9:1, v/v) decreased with time to 4–13% after 218 days of incubation with fresh and aged 14C-manure and both soils. Non-extractable residues were the main route of the fate of the 14C-SDZ residues (above 90% of total recovered 14C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the 14C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl2 solution) also decreased with increasing incubation period (5–7% after 218 days). Due to thin-layer chromatography (TLC), 500 μg of 14C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh 14C-manure, and about 50 μg kg−1 after 218 days. Bioavailable 14C-SDZ portions present in the CaCl2 extracts were about 350 μg kg−1 with amendment. Higher concentrations were initially detected with aged 14C-manure (ethanol-water extracts: 1,920 μg kg−1; CaCl2 extracts: 1,020 μg kg−1), probably due to release of 14C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the 14C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble 14C-SDZ residues contained in 14C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZs non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.
Applied and Environmental Microbiology | 2012
Helene Bouju; Benjamin Ricken; Trello Beffa; Philippe F.-X. Corvini; Boris A. Kolvenbach
ABSTRACT In this study, we isolated five strains capable of degrading 14C-labeled sulfamethoxazole to 14CO2 from a membrane bioreactor acclimatized to sulfamethoxazole, carbamazepine, and diclofenac. Of these strains, two belonged to the phylum Actinobacteria, while three were members of the Proteobacteria.
Applied and Environmental Microbiology | 2011
Markus Lenz; Boris A. Kolvenbach; Benjamin Gygax; Suzette Moes; Philippe F.-X. Corvini
ABSTRACT Selenium-reducing microorganisms produce elemental selenium nanoparticles with particular physicochemical properties due to an associated organic fraction. This study identified high-affinity proteins associated with such bionanominerals and with nonbiogenic elemental selenium. Proteins with an anticipated functional role in selenium reduction, such as a metalloid reductase, were found to be associated with nanoparticles formed by one selenium respirer, Sulfurospirillum barnesii.
Applied and Environmental Microbiology | 2013
Benjamin Ricken; Philippe F.-X. Corvini; Danuta Cichocka; Martina Parisi; Markus Lenz; Dominik Wyss; Paula M. Martínez-Lavanchy; Jochen A. Müller; Patrick Shahgaldian; Ludovico G. Tulli; Hans-Peter E. Kohler; Boris A. Kolvenbach
ABSTRACT Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us.
Applied and Environmental Microbiology | 2004
Philippe F.-X. Corvini; R. J. W. Meesters; A. Schäffer; H. F. Schröder; Ralph Vinken; Juliane Hollender
ABSTRACT Sphingomonas sp. strain TTNP3 degrades 4(3′,5′-dimethyl-3′-heptyl)-phenol and unidentified metabolites that were described previously. The chromatographic analyses of the synthesized reference compound and the metabolites led to their identification as 2(3′,5′-dimethyl-3′-heptyl)-1,4-benzenediol. This finding indicates that the nonylphenol metabolism of this bacterium involves unconventional degradation pathways where an NIH shift mechanism occurs.
Collaboration
Dive into the Philippe F.-X. Corvini's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs