Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Fort is active.

Publication


Featured researches published by Philippe Fort.


Nature | 2003

Comparative genomics: Insecticide resistance in mosquito vectors

Mylène Weill; Georges Lutfalla; Knud Erik Mogensen; Fabrice Chandre; Arnaud Berthomieu; Claire Berticat; Nicole Pasteur; Alexandre Philips; Philippe Fort; Michel Raymond

Resistance to insecticides among mosquitoes that act as vectors for malaria (Anopheles gambiae) and West Nile virus (Culex pipiens) emerged more than 25 years ago in Africa, America and Europe; this resistance is frequently due to a loss of sensitivity of the insects acetylcholinesterase enzyme to organophosphates and carbamates. Here we show that this insensitivity results from a single amino-acid substitution in the enzyme, which we found in ten highly resistant strains of C. pipiens from tropical (Africa and Caribbean) and temperate (Europe) areas, as well as in one resistant African strain of A. gambiae. Our identification of this mutation may pave the way for designing new insecticides.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila

Mylène Weill; Philippe Fort; Arnaud Berthomieu; Marie Pierre Dubois; Nicole Pasteur; Michel Raymond

Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace–1) being a new locus and the other (ace–2) being homologous to the gene previously described in Drosophila. The gene ace–1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace–1 and ace–2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace–1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace–1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace–2 in at least the Drosophilidae and Muscidae and ace–1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed.


Current Biology | 2002

The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth

Soline Estrach; Susanne Schmidt; Sylvie Diriong; Aubin Penna; Anne Blangy; Philippe Fort; Anne Debant

Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.


FEBS Letters | 2000

A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells

Nathalie Meyer; Marisa Jaconi; Angela Landopoulou; Philippe Fort; Michel Pucéat

We have established a CGR8 embryonic stem (ES) cell clone (MLC2ECFP) which expresses the enhanced cyan variant of Aequorea victoria green fluorescent protein (ECFP) under the transcriptional control of the ventricular myosin light chain 2 (MLC2v) promoter. Using epifluorescence imaging of vital embryoid bodies (EB) and reverse transcription‐polymerase chain reaction (RT‐PCR), we found that the MLC2v promoter is switched on as early as day 7 and is accompanied by formation of cell clusters featuring a bright ECFP blue fluorescence. The fluorescent areas within the EBs were all beating on day 8. MLC2ECFP ES cells showed the same time course of cardiac differentiation as mock ES cells as assessed by RT‐PCR of genes encoding cardiac‐specific transcription factors and contractile proteins. The MLC2v promoter conferred ventricular specificity to ECFP expression within the EB as revealed by MLC2v co‐staining of ECFP fluorescent cells. MLC2ECFP‐derived cardiac cells still undergo cell division on day 12 after isolation from EBs but withdraw from the cell cycle on day 16. This ES cell clone provides a powerful cell model to study the signalling roads of factors regulating cardiac cell proliferation and terminal differentiation with a view to using them for experimental cell therapy.


Molecular and Cellular Biology | 2001

Raf-MEK-Erk Cascade in Anoikis Is Controlled by Rac1 and Cdc42 via Akt

Olivier Zugasti; Wilfrid Rul; Pierre Roux; Carole Peyssonnaux; Alain Eychène; Thomas F. Franke; Philippe Fort; Urszula Hibner

ABSTRACT Signals from the extracellular matrix are essential for the survival of many cell types. Dominant-negative mutants of two members of Rho family GTPases, Rac1 and Cdc42, mimic the loss of anchorage in primary mouse fibroblasts and are potent inducers of apoptosis. This pathway of cell death requires the activation of both the p53 tumor suppressor and the extracellular signal-regulated mitogen-activated protein kinases (Erks). Here we characterize the proapoptotic Erk signal and show that it differs from the classically observed survival-promoting one by the intensity of the kinase activation. The disappearance of the GTP-bound forms of Rac1 and Cdc42 gives rise to proapoptotic, moderate activation of the Raf-MEK-Erk cascade via a signaling pathway involving the kinases phosphatidlyinositol 3-kinase and Akt. Moreover, concomitant activation of p53 and inhibition of Akt are both necessary and sufficient to signal anoikis in primary fibroblasts. Our data demonstrate that the GTPases of the Rho family control three major components of cellular signal transduction, namely, p53, Akt, and Erks, which collaborate in the induction of apoptosis due to the loss of anchorage.


Current Biology | 1997

The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells.

Pierre Roux; Cécile Gauthier-Rouvière; Sandrine Doucet-Brutin; Philippe Fort

BACKGROUND Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs, lamellipodia and ruffles by Rac, and stress fibers by RhoA. In addition, Rho GTPases are involved in progression through the G1 phase of the cell cycle, and Rac1 and RhoA have recently been directly implicated in the morphogenic and mitogenic responses to transformation by oncogenic Ras. In order to examine the cross-talk between Ras and Rho proteins, we investigated the effects on focus-forming activity and cell growth of the Rho-family members Cdc42Hs, Rac1 and RhoG by expressing constitutively active or dominant-negative forms in NIH3T3 cells. RESULTS Expression of Rac1 or RhoG modulated the saturation density to which the cells grew, probably by affecting the level of contact inhibition. Although all three GTPases were required for cell transformation mediated by Ras but not by constitutively active Raf, the selective activation of each GTPase was not sufficient to induce the formation of foci. The coordinated activation of Cdc42Hs, RhoG and Rac1, however, elicited a high focus-forming activity, independent of the mitogen-activated ERK and JNK protein kinase pathways. CONCLUSIONS Ras-mediated transformation induces extensive changes in cell morphology which require the activity of members of the Rho family of GTPases. Our data show that the pattern of coordinated Rho family activation that elicits a focus-forming activity in NIH3T3 cells is distinct from the regulatory cascade that has been proposed for the control of actin-dependent structures in Swiss 3T3 cells.


Journal of Biological Chemistry | 2000

Characterization of TCL, a New GTPase of the Rho Family related to TC10 and Cdc42

Emmanuel Vignal; Marion De Toledo; Franck Comunale; Angela Ladopoulou; Cécile Gauthier-Rouvière; Anne Blangy; Philippe Fort

GTPases of the Rho family control a wide variety of cellular processes such as cell morphology, motility, proliferation, differentiation, and apoptosis. We report here the characterization of a new Rho member, which shares 85% and 78% amino acid similarity to TC10 and Cdc42, respectively. This GTPase, termed as TC10-like (TCL) is encoded by an unexpectedly large locus, made of five exons spanning over 85 kilobases on human chromosome 14. TCL mRNA is 2.5 kilobases long and is mainly expressed in heart. In vitro, TCL shows rapid GDP/GTP exchange and displays higher GTP dissociation and hydolysis rates than TC10. Using the yeast two-hybrid system and GST pull-down assays, we show that GTP-bound but not GDP-bound TCL protein directly interacts with Cdc42/Rac interacting binding domains, such as those found in PAK and WASP. Despite its overall similarity to TC10 and Cdc42, the constitutively active TCL mutant displays distinct morphogenic activity in REF-52 fibroblasts, producing large and dynamic F-actin-rich ruffles on the dorsal cell membrane. Interestingly, TCL morphogenic activity is blocked by dominant negative Rac1 and Cdc42 mutants, suggesting a cross-talk between these three Rho GTPases.


Molecular and Cellular Biology | 1992

Growth-regulated expression of rhoG, a new member of the ras homolog gene family.

S Vincent; Philippe Jeanteur; Philippe Fort

Cellular transition from the resting state to DNA synthesis involves master switches genes encoding transcriptional factors (e.g., fos, jun, and egr genes), whose targets remain to be fully characterized. To isolate coding sequences specifically accumulated in late G1, a differential screening was performed on a cDNA library prepared from hamster lung fibroblasts stimulated for 5 h with serum. One of the positive clones which displayed a sevenfold induction, turned out to code for a protein sharing homology to Ras-like products. Cloning and sequence analysis of the human homolog revealed that this putative new small GTPase, referred to as rhoG, is more closely related to the rac, CDC42, and TC10 members of the rho (ras homolog) gene family and might have diverged very early during evolution. rhoG mRNA accumulates in proportion to the mitogenic strength of various purified growth factors used for the stimulation, as a consequence of transcriptional activation. G1-specific RNA accumulation is impaired upon addition of antimitogenic cyclic AMP and is enhanced when protein synthesis is inhibited, mainly as a result of RNA stabilization. rhoG mRNA expression is observed in a wide variety of human organs but reaches a particularly high level in lung and placental tissues.


Development | 2004

Distinct roles of Rac1/Cdc42 and Rho/Rock for axon outgrowth and nucleokinesis of precerebellar neurons toward netrin 1.

Frédéric Causeret; Matías Hidalgo-Sánchez; Philippe Fort; Stéphanie Backer; Michel-Robert Popoff; Cécile Gauthier-Rouvière; Evelyne Bloch-Gallego

During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.


Chemistry & Biology | 2009

A Cell Active Chemical GEF Inhibitor Selectively Targets the Trio/RhoG/Rac1 Signaling Pathway

Nathalie Bouquier; Emmanuel Vignal; Sophie Charrasse; Mylène Weill; Susanne Schmidt; Jean-Paul Leonetti; Anne Blangy; Philippe Fort

RhoGEFs (guanine nucleotide exchange factors of the Rho GTPase family) are upstream regulators of cell adhesion and migration pathways, thus representing attractive yet relatively unexplored targets for the development of anti-invasive drugs. We screened for chemical inhibitors of TrioN, the N-terminal GEF domain of the multidomain Trio protein, and identified ITX3 as a nontoxic inhibitor. In transfected mammalian cells, ITX3 blocked TrioN-mediated dorsal membrane ruffling and Rac1 activation while having no effect on GEF337-, Tiam1-, or Vav2-mediated RhoA or Rac1 activation. ITX3 specifically inhibited endogenous TrioN activity, as evidenced by its ability to inhibit neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells or C2C12 differentiation into myotubes. This study introduces a selective cell active inhibitor of the Trio/RhoG/Rac1 pathway and validates RhoGEFs as druggable targets.

Collaboration


Dive into the Philippe Fort's collaboration.

Top Co-Authors

Avatar

Mylène Weill

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Anne Blangy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Vignal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Cécile Gauthier-Rouvière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Roux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicole Pasteur

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Alexandre Philips

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Paul Leonetti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Louise Marty

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge