Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Garrigue is active.

Publication


Featured researches published by Philippe Garrigue.


Shock | 2016

ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability.

Guillaume Hache; Philippe Garrigue; Youssef Bennis; Jimmy Stalin; Anais Moyon; Anthony Cerami; Michael Brines; Marcel Blot-Chabaud; Florence Sabatier; Françoise Dignat-George; Benjamin Guillet

Background: Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. Methods: ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. Results: In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. Discussion: ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.


Neurological Research | 2013

Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats

Lionel Pellegrini; Youssef Bennis; Benjamin Guillet; Lionel Velly; Philippe Garrigue; Florence Sabatier; Françoise Dignat-George; Nicolas Bruder; Pascale Pisano

Abstract Objective: Many studies have demonstrated beneficial effects of either erythropoietin (EPO) or endothelial progenitor cell (EPC) treatment in cerebral ischemia. To improve post-ischemic tissue repair, we investigated the effect of systemic administration of endothelial colony-forming cells (ECFCs), considered as relevant endothelial progenitors due to their specific vasculogenic activity, in the presence or absence of EPO, on functional recovery, apoptosis, angiogenesis, and neurogenesis in a transient focal cerebral ischemia model in the adult rat. Design: Experimental study. Intervention: The rats were divided into four groups 24 hours after ischemia,, namely control, ECFCs, EPO, and ECFCs+EPO, and received a single intravenous injection of ECFCs (5×106 cells) and/or intraperitoneal administration of EPO (2500 UI/kg per day for 3 days). Measurement: Infarct volume, functional recovery, apoptosis, angiogenesis, and neurogenesis were assessed at different time points after ischemia. Main results: The combination of EPO and ECFCs was the only treatment that completely restored neurological function. The ECFCs+EPO treatment was also the most effective to decrease apoptosis and to increase angiogenesis and neurogenesis in the ischemic hemisphere compared to controls and to groups receiving ECFCs or EPO alone. Conclusion: These results suggest that EPO could act in a synergistic way with ECFCs to potentiate their therapeutic benefits.


International Journal of Stroke | 2016

Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats.

Philippe Garrigue; Laura Giacomino; Chiara Bucci; Valeria Muzio; Maria A Filannino; Florence Sabatier; Françoise Dignat-George; Pascale Pisano; Benjamin Guillet

Background Cerebral ischemia is a leading cause of disability worldwide and no other effective therapy has been validated to date than intravenous thrombolysis. In this context, many preclinical models have been developed and recent advances in preclinical imaging represent promising tools. Thus, we proposed here to characterize in vivo time profiles of cerebral blood flow, blood–brain barrier disruption and apoptosis following a transient middle cerebral artery occlusion in rats using SPECT/CT imaging. Methods Rats underwent a 1-h middle cerebral artery occlusion followed by reperfusion. Cerebral blood flow, blood–brain barrier disruption and apoptosis were evaluated by SPECT/CT imaging using respectively 99mTc-HMPAO, 99mTc-DTPA and the experimental 99mTc-Annexin V-128, up to 14 days after middle cerebral artery occlusion. Histological evaluation of apoptosis has been performed using TUNEL method to validate the 99mTc-Annexin V-128 uptake. Results 99mTc-HMPAO cerebral blood flow evaluation showed hypoperfusion during occlusion, partially restored on days 4 and 7 and sustained up to 14 days after middle cerebral artery occlusion. 99mTc-DTPA SPECT/CT showed a blood–brain barrier disruption starting on day 1 post-middle cerebral artery occlusion, peaking on day 2, with barrier integrity totally restored on day 7. 99mTc-Annexin V-128 SPECT/CT imaging showed significant positive correlation with TUNEL immunohistochemistry and allowed ischemic-induced apoptosis to be detected from day 2 to day 7, peaking on day 3 after middle cerebral artery occlusion. Conclusions Using SPECT/CT imaging, we showed that after transient middle cerebral artery occlusion in rat there was a sustained decrease in cerebral blood flow followed by blood–brain barrier disruption preceding meanwhile apoptosis. Rodent SPECT/CT imaging of cerebral blood flow, blood–brain barrier disruption and apoptosis appears to be an efficient tool for evaluating neuroprotective drugs and regenerative therapies against cerebral ischemia and time-windows for therapeutic intervention.


The Journal of Nuclear Medicine | 2017

The Evolving Role of Succinate in Tumor Metabolism: An 18 F-FDG–Based Study

Philippe Garrigue; Aurore Bodin-Hullin; Laure Balasse; Samantha Fernandez; Wassim Essamet; Françoise Dignat-George; Karel Pacak; Benjamin Guillet; David Taïeb

In recent years, inherited and acquired mutations in the tricarboxylic acid (TCA) cycle enzymes have been reported in diverse cancers. Pheochromocytomas and paragangliomas often exhibit dysregulation of glucose metabolism, which is also driven by mutations in genes encoding the TCA cycle enzymes or by activation of hypoxia signaling. Pheochromocytomas and paragangliomas associated with succinate dehydrogenase (SDH) deficiency are characterized by high 18F-FDG avidity. This association is currently only partially explained. Therefore, we hypothesized that accumulation of succinate due to the TCA cycle defect could be the major connecting hub between SDH-mutated tumors and the 18F-FDG uptake profile. Methods: To test whether succinate modifies the 18F-FDG metabolic profile of tumors, we performed in vitro and in vivo (small-animal PET/CT imaging and autoradiography) experiments in the presence of succinate, fumarate, and phosphate-buffered saline (PBS) in different cell models. As a control, we also evaluated the impact of succinate on 18F-fluorocholine uptake and retention. Glucose transporter 1 (GLUT1) immunohistochemistry was performed to assess whether 18F-FDG uptake correlates with GLUT1 staining. Results: Intratumoral injection of succinate significantly increased 18F-FDG uptake at 24 h on small-animal PET/CT imaging and autoradiography. No effect of succinate was observed on cancer cells in vitro, but interestingly, we found that succinate caused increased 18F-FDG uptake by human umbilical vein endothelial cells in a concentration-dependent manner. No significant effect was observed after intratumoral injection of fumarate or PBS. Succinate, fumarate, and PBS have no effect on cell viability, regardless of cell lineage. Intramuscular injection of succinate also significantly increases 18F-FDG uptake by muscle when compared with either PBS or fumarate, highlighting the effect of succinate on connective tissues. No difference was observed between PBS and succinate on 18F-fluorocholine uptake in the tumor and muscle and on hind limb blood flow. GLUT1 expression quantification did not significantly differ between the study groups. Conclusion: The present study shows that succinate stimulates 18F-FDG uptake by endothelial cells, a finding that partially explains the 18F-FDG metabotype observed in tumors with SDH deficiency. Although this study is an 18F-FDG–based approach, it provides an impetus to better characterize the determinants of 18F-FDG uptake in various tumors and their surrounding microenvironment, with a special emphasis on the role of tumor-specific oncometabolites.


The Journal of Nuclear Medicine | 2016

Erythropoietin Pretreatment of Transplanted Endothelial Colony-Forming Cells Enhances Recovery in a Cerebral Ischemia Model by Increasing Their Homing Ability: A SPECT/CT Study

Philippe Garrigue; Guillaume Hache; Youssef Bennis; Pauline Brige; Jimmy Stalin; Lionel Pellegrini; Lionel Velly; Francesca Orlandi; Elena Castaldi; Françoise Dignat-George; Florence Sabatier; Benjamin Guillet

Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases, as less than 10% of patients with an ischemic stroke are eligible for thrombolysis. We previously reported that erythropoietin priming of ECFCs increased their in vitro and in vivo angiogenic properties in mice with hindlimb ischemia. The present study used SPECT/CT to evaluate whether priming of ECFCs with erythropoietin could enhance their homing to the ischemic site after transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and potentiate their protective or regenerative effect on blood–brain barrier (BBB) disruption, cerebral apoptosis, and cerebral blood flow (CBF). Methods: Rats underwent a 1-h MCAO followed by reperfusion and then 1 d after MCAO received an intravenous injection of either PBS (control, n = 10), PBS-primed ECFCs (ECFCPBS, n = 13), or erythropoietin-primed ECFCs (ECFCEPO, n = 10). ECFC homing and the effect on BBB disruption, cerebral apoptosis, and CBF were evaluated by SPECT/CT up to 14 d after MCAO. The results were expressed as median ± interquartile range for ipsilateral-to-contralateral ratio of the activity in middle cerebral artery–vascularized territories in each hemisphere. Histologic evaluation of neuronal survival and astrocytic proliferation was performed on day 14. Results: Erythropoietin priming increased homing of ECFCs to the ischemic hemisphere (ECFCPBS, 111.0% ± 16.0%; ECFCEPO, 146.5% ± 13.3%). BBB disruption was significantly reduced (control, 387% ± 153%; ECFCPBS, 151% ± 46% [P < 0.05]; ECFCEPO, 112% ± 9% [P < 0.001]) and correlated negatively with ECFC homing (Pearson r = −0.6930, P = 0.0002). Cerebral apoptosis was significantly reduced (control, 161% ± 10%; ECFCPBS, 141% ± 9% [P < 0.05]; ECFCEPO,118% ± 5% [P < 0.001]) and correlated negatively with ECFC homing (r = −0.7251, P < 0.0001). CBF was significantly restored with ECFCs and almost totally so with erythropoietin priming (control, 72% ± 2%; ECFCPBS, 90% ± 4% [P < 0.01]; ECFCEPO, 99% ± 4% [P < 0.001]) and correlated positively with ECFC homing (r = 0.7348, P < 0.0001). Immunoblocking against the CD146 receptor on ECFCs highlighted its notable role in ECFC homing with erythropoietin priming (ECFCEPO, 147% ± 14%, n = 4; ECFCEPO with antibody against CD146, 101% ± 12%, n = 4 [P < 0.05]). Conclusion: Priming with erythropoietin before cell transplantation is an efficient strategy to amplify the migratory and engraftment capacities of ECFCs and their beneficial impact on BBB disruption, apoptosis, and CBF.


Pet Clinics | 2015

Application and Dosimetric Requirements for Gallium-68–labeled Somatostatin Analogues in Targeted Radionuclide Therapy for Gastroenteropancreatic Neuroendocrine Tumors

David Taïeb; Philippe Garrigue; Manuel Bardiès; Ahmad Esmaeel Abdullah; Karel Pacak

Neuroendocrine tumors (NETs) are associated with variable prognosis, with grade 1 and 2 NETs having more favorable outcomes than grade 3. Patients with gastroenteropancreatic (GEP)-NET need individualized interdisciplinary evaluations and treatment. New treatment options have become available with significant improvements in progression-free survival. Peptide receptor radionuclide therapy (PRRT) using (90)Y or (177)Lu-labeled somatostatin analogues (SSTa) has also shown promise in the treatment of advanced progressive NETs. (68)Ga-1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA)-SSTa can be used as companion imaging agents to assist in radionuclide therapy selection. (68)Ga-DOTA-SSTa PET/computed tomography might also provide information for prognosis, tumor response assessment to PRRT, and internal dosimetry.


Clinical Endocrinology | 2018

Prospective evaluation of 68Ga-DOTATATE PET/CT in limited disease neuroendocrine tumours and/or elevated serum neuroendocrine biomarkers

Sophie Gabriel; Philippe Garrigue; Laetitia Dahan; Frederic Castinetti; F. Sebag; Karine Baumstark; Cendrine Archange; Abhishek Jha; Karel Pacak; Benjamin Guillet; David Taïeb

The 68Ga‐labelled somatostatin analogues (68Ga‐DOTA‐SSAs) is becoming popular as an important diagnostic tool in neuroendocrine tumours as evidenced by a growing number of reports detailing institutional experience with various DOTA peptides. However, only few prospective studies have compared 68Ga‐DOTA‐SSAs and somatostatin receptor scintigraphy (SRS) in gastroenteropancreatic neuroendocrine tumours (GEP‐NETs) and pulmonary neuroendocrine tumours.


Stem Cells Translational Medicine | 2017

Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy

Isabelle Grandvuillemin; Philippe Garrigue; Alaa Ramdani; Farid Boubred; Umberto Simeoni; Françoise Dignat-George; Florence Sabatier; Benjamin Guillet

Neonatal hypoxic‐ischemic encephalopathy (NHIE) is a dramatic perinatal complication, associated with poor neurological prognosis despite neuroprotection by therapeutic hypothermia, in the absence of an available curative therapy. We evaluated and compared ready‐to‐use human umbilical cord blood cells (HUCBC) and bankable but allogeneic endothelial progenitors (ECFC) as cell therapy candidate for NHIE. We compared benefits of HUCBC and ECFC transplantation 48 hours after injury in male rat NHIE model, based on the Rice‐Vannucci approach. Based on behavioral tests, immune‐histological assessment and metabolic imaging of brain perfusion using single photon emission computed tomography (SPECT), HUCBC, or ECFC administration provided equally early and sustained functional benefits, up to 8 weeks after injury. These results were associated with total normalization of injured hemisphere cerebral blood flow assessed by SPECT/CT imaging. In conclusion, even if ECFC represent an efficient candidate, HUCBC autologous criteria and easier availability make them the ideal candidate for hypoxic‐ischemic cell therapy. Stem Cells Translational Medicine 2017;6:1987–1996


Theranostics | 2018

Early prediction of revascularisation by angiomotin-targeting positron emission tomography

Anais Moyon; Philippe Garrigue; Laure Balasse; Samantha Fernandez; Pauline Brige; Marie Nollet; Guillaume Hache; Marcel Blot-Chabaud; Françoise Dignat-George; Benjamin Guillet

This study aimed to develop a PET imaging agent of angiomotin (AMOT) expression, a potential biomarker of functional tissue regeneration in post-ischaemic conditions. Methods: Hindlimb ischaemia was induced by ligature and resection of the right femoral artery in mice, and clinical score and limb perfusion were evaluated up to 30 days after surgery. AMOT expression was evaluated by histology and Western blot analysis. NODAGA-conjugates of AMOT ligand, sCD146, were designed, synthesised and radiolabelled with gallium-68. 68Ga-sCD146 microPET/CT imaging was performed from day 1 to day 30 after ischaemia. 68Ga-sCD146 specificity for AMOT was evaluated by autoradiography. Results: Immunohistochemistry showed a significant endothelial overexpression of AMOT from day 5 up to day 10 in the ischaemic hindlimb. 68Ga-sCD146 PET signal intensity correlated significantly with AMOT immunohistochemistry evaluation. 68Ga-sCD146 PET imaging showed a significant uptake in the ischaemic hindlimb from day 2 to day 15, peaking on day 5 (ipsi/contralateral ratio = 2.4 ± 1.3, P = 0.0005) and significantly decreased after pharmacological blocking (62.57 ± 11% decrease in PET signal P = 0.032). Finally, we observed a significant correlation between day 5 68Ga-sCD146 PET signal intensity and clinical recovery (day 28) or hindlimb perfusion recovery (day 30). Conclusions: This work reports for the first time an early and sustained increase in AMOT expression after hindlimb ischaemia in mice. We therefore developed an AMOT-targeting imaging agent, 68Ga-sCD146, and showed its specific uptake up to 21 days after ischaemic hindlimb using microPET imaging. Correlation of early post-ischaemic PET signal with both delayed perfusion recovery and clinical outcome allows us to postulate that 68Ga-sCD146 represents a promising radiotracer for tissue angiogenesis assessment.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors

Philippe Garrigue; Jingjie Tang; Ling Ding; Ahlem Bouhlel; Aura Tintaru; Erik Laurini; Yuanyu Huang; Zhenbin Lyu; Mengjie Zhang; Samantha Fernandez; Laure Balasse; Wenjun Lan; Eric Mas; Domenico Marson; Yuhua Weng; Xiaoxuan Liu; Suzanne Giorgio; Juan L. Iovanna; Sabrina Pricl; Benjamin Guillet; Ling Peng

Significance Nanotechnology-based imaging is expected to bring breakthroughs in cancer diagnosis by improving imaging sensitivity and specificity while reducing toxicity. Here, we developed an innovative nanosystem for positron emission tomography (PET) imaging based on a self-assembling amphiphilic dendrimer. This dendrimer assembled spontaneously into uniform supramolecular nanomicelles with abundant PET reporting units on the surface. By harnessing both dendrimeric multivalence and the “enhanced permeation and retention” (EPR) effect, this dendrimer nanosystem effectively accumulated in tumors, leading to exceedingly sensitive and specific imaging of various tumors, especially those that are otherwise undetectable using the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). This study illustrates the power of nanotechnology based on self-assembling dendrimers to provide an effective platform for bioimaging and related biomedical applications. Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the “enhanced permeation and retention” (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low–glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis.

Collaboration


Dive into the Philippe Garrigue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Françoise Dignat-George

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Pascale Pisano

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Karel Pacak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Taïeb

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jimmy Stalin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Lionel Velly

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Nicolas Bruder

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Pauline Brige

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Anais Moyon

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge