Philippe Gosset
Necker-Enfants Malades Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Gosset.
Journal of Medical Genetics | 2003
Marlène Rio; L Clech; Jeanne Amiel; L. Faivre; Stanislas Lyonnet; M. Le Merrer; Sylvie Odent; Didier Lacombe; Patrick Edery; Raja Brauner; O Raoul; Philippe Gosset; M Prieur; Michel Vekemans; Arnold Munnich; Laurence Colleaux; Valérie Cormier-Daire
Sotos syndrome is an overgrowth syndrome characterised by pre- and postnatal overgrowth, macrocephaly, advanced bone age, and typical facial features. Weaver syndrome is a closely related condition characterised by a distinctive craniofacial appearance, advanced carpal maturation, widened distal long bones, and camptodactyly. Haploinsufficiency of the NSD1 gene has recently been reported as the major cause of Sotos syndrome while point mutations accounted for a minority of cases. We looked for NSD1 deletions or mutations in 39 patients with childhood overgrowth. The series included typical Sotos patients (23/39), Sotos-like patients (lacking one major criteria, 10/39), and Weaver patients (6/39). We identified NSD1 deletions (6/33) and intragenic mutations (16/33) in Sotos syndrome patients. We also identified NSD1 intragenic mutations in 3/6 Weaver patients. We conclude therefore that NSD1 mutations account for most cases of Sotos syndrome and a significant number of Weaver syndrome cases in our series. Interestingly, mental retardation was consistently more severe in patients with NSD1 deletions. Macrocephaly and facial gestalt but not overgrowth and advanced bone age were consistently observed in Sotos syndrome patients. We suggest therefore considering macrocephaly and facial gestalt as mandatory criteria for the diagnosis of Sotos syndrome and overgrowth and advanced bone age as minor criteria.
American Journal of Human Genetics | 2001
Jeanne Amiel; Yolanda Espinosa-Parrilla; Julie Steffann; Philippe Gosset; Anna Pelet; Marguerite Prieur; Odile Boute; Agnès Choiset; Didier Lacombe; Nicole Philip; Martine Le Merrer; Hajime Tanaka; Marianne Till; Renaud Touraine; Annick Toutain; Michel Vekemans; Arnold Munnich; Stanislas Lyonnet
Hirschsprung disease (HSCR) is a common malformation of neural-crest-derived enteric neurons that is frequently associated with other congenital abnormalities. The SMADIP1 gene recently has been recognized as disease causing in some patients with 2q22 chromosomal rearrangement, resulting in syndromic HSCR with mental retardation, with microcephaly, and with facial dysmorphism. We screened 19 patients with HSCR and mental retardation and eventually identified large-scale SMADIP1 deletions or truncating mutations in 8 of 19 patients. These results allow further delineation of the spectrum of malformations ascribed to SMADIP1 haploinsufficiency, which includes frequent features such as hypospadias and agenesis of the corpus callosum. Thus, SMADIP1, which encodes a transcriptional corepressor of Smad target genes, may play a role not only in the patterning of neural-crest-derived cells and of CNS but also in the development of midline structures in humans.
Journal of Medical Genetics | 2002
Marlène Rio; Florence Molinari; Solange Heuertz; Catherine Ozilou; Philippe Gosset; O Raoul; Valérie Cormier-Daire; Jeanne Amiel; Stanislas Lyonnet; M. Le Merrer; Catherine Turleau; M-C de Blois; Marguerite Prieur; S. Romana; Michel Vekemans; Arnold Munnich; Laurence Colleaux
Recent studies have shown that cryptic unbalanced subtelomeric rearrangements contribute to a significant proportion of idiopathic syndromic mental retardation cases. Using a fluorescent genotyping based strategy, we found a 10% rate of cryptic subtelomeric rearrangements in a large series of 150 probands with severe idiopathic syndromic mental retardation and normal RHG-GTG banded karyotype. Fourteen children were found to carry deletions or duplications of one or more chromosome telomeres and two children had uniparental disomy. This study clearly shows that fluorescent genotyping is a sensitive and cost effective method that not only detects cryptic subtelomeric rearrangements but also provides a unique opportunity to detect uniparental disomies. We suggest giving consideration to systematic examination of subtelomeric regions in the diagnostic work up of patients with unexplained syndromic mental retardation.
European Journal of Human Genetics | 2005
David Geneviève; Damien Sanlaville; Laurence Faivre; Marie-Laure Kottler; Marguerite Jambou; Philippe Gosset; Dinane Boustani-Samara; Graziella Pinto; Catherine Ozilou; Genevieve Abeguile; Arnold Munnich; Serge Romana; Odile Raoul; Valérie Cormier-Daire; Michel Vekemans
Deletions of the long arm of chromosome 20 are rare. Here, we report on two girls with a very small interstitial deletion of the long arm of chromosome 20 presenting with severe pre- and post-natal growth retardation, intractable feeding difficulties, abnormal subcutaneous adipose tissue, similar facial dysmorphism, psychomotor retardation and hypotonia. Standard cytogenetic studies were normal, but high-resolution chromosomes analysis showed the presence of a chromosome (20)(q13.2–q13.3) interstitial deletion. Karyotypes of both parents were normal. Molecular studies using FISH and microsatellite polymorphic markers showed that the deletion was of paternal origin and was approximatively 4.5 Mb in size. A review of other reported patients with similar deletions of the long arm of chromosome 20 shows that the observed phenotype might be explained in the light of the GNAS imprinted locus in particular by the absence of the Gnasxl paternally imprinted gene and the TFA2PC gene in the deleted genetic interval.
European Journal of Human Genetics | 2001
Laurence Colleaux; Marlène Rio; Solange Heuertz; Séverine Moindrault; Catherine Turleau; Catherine Ozilou; Philippe Gosset; Odile Raoult; Stanislas Lyonnet; Valérie Cormier-Daire; Jeanne Amiel; Martine Le Merrer; Monique Picq; Marie-Christine de Blois; Marguerite Prieur; Serge Romana; François Cornelis; Michel Vekemans; Arnold Munnich
Cryptic unbalanced subtelomeric rearrangements are known to cause a significant proportion of idiopathic mental retardation in childhood. Because of the limited sensitivity of routine analyses, the cytogenetic detection of such rearrangements requires molecular techniques, namely FISH and comparative genomic hybridisation (CGH). An alternative approach consists in using genetic markers to detect segmental aneusomy. Here, we describe a new strategy based upon automated fluorescent genotyping to search for non mendelian segregation of telomeric microsatellites. A total of 29 individuals belonging to 24 unrelated families were screened and three abnormal patterns of segregation were detected (two rearrangements and one parental disomy). This study gives strong support to the view that cryptic telomeric rearrangements significantly contribute to idiopathic mental retardation and demonstrates that fluorescent genotyping is a very sensitive and cost-effective method to detect deletions, duplications and uniparental disomies.
European Journal of Human Genetics | 2005
Damien Sanlaville; Marguerite Prieur; Marie-Christine de Blois; David Geneviève; Jean-Michel Lapierre; Catherine Ozilou; Monique Picq; Philippe Gosset; Nicole Morichon-Delvallez; Arnold Munnich; Valérie Cormier-Daire; Geneviève Baujat; Serge Romana; Michel Vekemans; Catherine Turleau
We report on two patients, a boy and a girl, with an additional Xq28 chromosome segment translocated onto the long arm of an autosome. The karyotypes were 46,XY,der(10)t(X;10)(q28;qter) and 46,XX,der(4)t(X;4)(q28;q34), respectively. In both cases, the de novo cryptic unbalanced X-autosome translocation resulted in a Xq28 chromosome functional disomy. To our knowledge, at least 17 patients with a distal Xq chromosome functional disomy have been described in the literature. This is the third report of a girl with an unbalanced translocation yielding such a disomy. When the clinical features of both patients are compared to those observed in patients reported in the literature, a distinct phenotype emerges including severe mental retardation, facial dysmorphic features with a wide face, a small mouth and a thin pointed nose, major axial hypotonia, severe feeding problems and proneness to infections. A clinically oriented FISH study using subtelomeric probes is necessary to detect such a cryptic rearrangement.
European Journal of Human Genetics | 2002
L. Faivre; Philippe Gosset; Valérie Cormier-Daire; Sylvie Odent; Jeanne Amiel; Irina Giurgea; Marie-Cécile Nassogne; Laurent Pasquier; Arnold Munnich; Serge Romana; Marguerite Prieur; Michel Vekemans; Marie-Christine de Blois; Catherine Turleau
Overgrowth is rarely associated with chromosomal imbalances. Here we report on four children from two unrelated families presenting with overgrowth and a terminal duplication of the long arm of chromosome 15 diagnosed using cytogenetic and FISH studies. In both cases, chromosome analysis of the parents showed a balanced translocation involving 15q26.1-qter. Molecular and cytogenetic studies showed three copies of the insulin-like growth factor 1 receptor (IGF1R) gene. This finding suggests that overgrowth observed in our patients might be causally related to a dosage effect of the IGF1R gene, in contrast to severe growth retardation observed in patients with terminal deletion of 15q. The present observation emphasises the importance of chromosome analysis in patients with overgrowth and mental retardation. Moreover, it further delineates a specific phenotype related to trisomy 15q26.1-qter with macrosomia at birth, overgrowth, macrocephaly and mild developmental delay being the major clinical features.
Clinical Genetics | 2002
G Joly; J-M Lapierre; Catherine Ozilou; Philippe Gosset; A Aurias; M-C de Blois; Marguerite Prieur; O Raoul; Laurence Colleaux; Arnold Munnich; Serge Romana; Michel Vekemans; Catherine Turleau
Segmental aneusomy for small chromosomal regions has been shown to be a common cause of mental retardation and multiple congenital anomalies. A screening method for such chromosome aberrations that are not detected using standard cytogenetic techniques is needed. Recent studies have focused on detection of subtle terminal chromosome aberrations using subtelomeric probes. This approach however excludes significant regions of the genome where submicroscopic rearrangements are also liable to occur. The aim of the present study was to evaluate the efficiency of comparative genomic hybridisation (CGH) for screening of submicroscopic chromosomal rearrangements. CGH was performed in a cohort of 17 patients (14 families) with mental retardation, dysmorphic features and a normal karyotype. Five subtle unbalanced rearrangements were identified in 7 patients. Subsequent FISH studies confirmed these results. Although no interstitial submicroscopic rearrangement was detected in this small series, the study emphasises the value of CGH as a screening approach to detect subtle chromosome rearrangements in mentally retarded patients with dysmorphic features and a normal karyotype.
American Journal of Medical Genetics Part A | 2003
David Geneviève; Valérie Cormier-Daire; Damien Sanlaville; L. Faivre; Philippe Gosset; L. Allart; M. Picq; Arnold Munnich; S. Romana; M-C de Blois; Michel Vekemans
Pallister–Killian syndrome is a rare disorder characterized by multiple congenital anomalies, coarse face, pigmentary skin changes, seizures, severe mental retardation, and the presence of an extra metacentric chromosome i(12p) confined to skin fibroblasts only. Here, we report on an unusual case of i(12p) in a 15‐year‐old boy presenting with mild mental retardation, minor facial features (long face, prognathism, short neck), normal weight, length, and OFC parameters as well as hyperpigmented streaks. The boy attended normal school until the age of 14 years. Because of hyperpigmented stripes, chromosome analysis was performed on skin fibroblasts. This study showed that 37% of the cells had an additional isochromosome for the short arm of chromosome 12. This observation illustrates the phenotypic variability of i(12p) and emphasizes the importance of skin fibroblasts chromosome analysis in patients with pigmentary skin changes.
Clinical Genetics | 2002
Damien Sanlaville; S. Romana; J.-M. Lapierre; Jeanne Amiel; David Geneviève; Catherine Ozilou; M. Le Lorc'h; S Brisset; Philippe Gosset; C Baumann; Catherine Turleau; Stanislas Lyonnet; Michel Vekemans
CHARGE association is a non‐random occurrence of congenital malformations including coloboma, heart disease, choanal atresia, retarded growth and/or retarded development, genital hypoplasia, ear anomalies and/or deafness. The cause of this association remains unknown. Various genetic mechanisms have been proposed, including a contiguous gene syndrome but, so far, no recurrent locus has been identified. To address this question, we decided to perform a comparative genomic hybridization (CGH) study on a cohort of 27 patients with CHARGE association and a normal standard karyotype. We found two chromosomal anomalies: a der(9)t(9;13) derived from a paternal translocation and a der(6)t(4;6) of unknown origin. This suggests that chromosome imbalances may well mimic CHARGE association. Therefore patients with CHARGE association must be carefully tested with classical and molecular cytogenetic techniques to detect a potential chromosome imbalance. It is expected that more stringent diagnostic criteria of CHARGE association could define a more homogeneous group of patients where a single genetic cause might be identified.