Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Henry is active.

Publication


Featured researches published by Philippe Henry.


Molecular Ecology | 2009

In situ population structure and ex situ representation of the endangered Amur tiger

Philippe Henry; D. Miquelle; T. Sugimoto; D. R. McCULLOUGH; A. Caccone; Michael A. Russello

The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well‐documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size (Ne = 27–35) and Ne/N ratio (0.07–0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.


Heredity | 2007

On the origin of the invasive olives (Olea europaea L., Oleaceae).

Guillaume Besnard; Philippe Henry; L. Wille; D Cooke; E. Chapuis

The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata × europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated.


Molecular Ecology | 2009

Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps

Philippe Henry; G. Le Lay; Jérôme Goudet; Antoine Guisan; Šárka Jahodová; Guillaume Besnard

The giant hogweed (Heracleum mantegazzianum) has successfully invaded 19 European countries as well as parts of North America. It has become a problematic species due to its ability to displace native flora and to cause public health hazards. Applying population genetics to species invasion can help reconstruct invasion history and may promote more efficient management practice. We thus analysed levels of genetic variation and population genetic structure of H. mantegazzianum in an invaded area of the western Swiss Alps as well as in its native range (the Caucasus), using eight nuclear microsatellite loci together with plastid DNA markers and sequences. On both nuclear and plastid genomes, native populations exhibited significantly higher levels of genetic diversity compared to invasive populations, confirming an important founder event during the invasion process. Invasive populations were also significantly more differentiated than native populations. Bayesian clustering analysis identified five clusters in the native range that corresponded to geographically and ecologically separated groups. In the invaded range, 10 clusters occurred. Unlike native populations, invasive clusters were characterized by a mosaic pattern in the landscape, possibly caused by anthropogenic dispersal of the species via roads and direct collection for ornamental purposes. Lastly, our analyses revealed four main divergent groups in the western Swiss Alps, likely as a consequence of multiple independent establishments of H. mantegazzianum.


PLOS ONE | 2012

Genetic Evidence for Restricted Dispersal along Continuous Altitudinal Gradients in a Climate Change-Sensitive Mammal: The American Pika

Philippe Henry; Zijian Sim; Michael A. Russello

When faced with rapidly changing environments, wildlife species are left to adapt, disperse or disappear. Consequently, there is value in investigating the connectivity of populations of species inhabiting different environments in order to evaluate dispersal as a potential strategy for persistence in the face of climate change. Here, we begin to investigate the processes that shape genetic variation within American pika populations from the northern periphery of their range, the central Coast Mountains of British Columbia, Canada. At these latitudes, pikas inhabit sharp elevation gradients ranging from sea level to 1500 m, providing an excellent system for studying the effects of local environmental conditions on pika population genetic structure and gene flow. We found low levels of neutral genetic variation compared to previous studies from more southerly latitudes, consistent with the relatively recent post-glacial colonization of the study location. Moreover, significant levels of inbreeding and marked genetic structure were detected within and among sites. Although low levels of recent gene flow were revealed among elevations within a transect, potentially admixed individuals and first generation migrants were identified using discriminant analysis of principal components between populations separated by less than five kilometers at the same elevations. There was no evidence for historical population decline, yet there was signal for recent demographic contractions, possibly resulting from environmental stochasticity. Correlative analyses revealed an association between patterns of genetic variation and annual heat-to-moisture ratio, mean annual precipitation, precipitation as snow and mean maximum summer temperature. Changes in climatic regimes forecasted for the region may thus potentially increase the rate of population extirpation by further reducing dispersal between sites. Consequently, American pika may have to rely on local adaptations or phenotypic plasticity in order to survive predicted climate changes, although additional studies are required to investigate the evolutionary potential of this climate change sensitive species.


Ecology and Evolution | 2013

Adaptive divergence along environmental gradients in a climate‐change‐sensitive mammal

Philippe Henry; Michael A. Russello

In the face of predicted climate change, a broader understanding of biotic responses to varying environments has become increasingly important within the context of biodiversity conservation. Local adaptation is one potential option, yet remarkably few studies have harnessed genomic tools to evaluate the efficacy of this response within natural populations. Here, we show evidence of selection driving divergence of a climate-change-sensitive mammal, the American pika (Ochotona princeps), distributed along elevation gradients at its northern range margin in the Coast Mountains of British Columbia (BC), Canada. We employed amplified-fragment-length-polymorphism-based genomic scans to conduct genomewide searches for candidate loci among populations inhabiting varying environments from sea level to 1500 m. Using several independent approaches to outlier locus detection, we identified 68 candidate loci putatively under selection (out of a total 1509 screened), 15 of which displayed significant associations with environmental variables including annual precipitation and maximum summer temperature. These candidate loci may represent important targets for predicting pika responses to climate change and informing novel approaches to wildlife conservation in a changing world.


European Journal of Wildlife Research | 2011

Obtaining high-quality DNA from elusive small mammals using low-tech hair snares

Philippe Henry; Michael A. Russello

Noninvasive sampling approaches are becoming increasingly important for enabling genetic studies of wildlife populations. While a number of methods have been described to noninvasively sample hair from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. Here we describe a novel and inexpensive noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We explore the quality of the sample by assessing PCR amplification success of mitochondrial and nuclear DNA fragments across four commercially available DNA isolation kits and two different quantities of hair in a factorial design. Additionally, we determined the sex of the individual samples using PCR–RFLP of ZFX/ZFY loci. We found that our snare is effective in obtaining hair that yield DNA of sufficient quality and quantity to successfully amplify a range of mitochondrial and nuclear fragment sizes. Specifically, we found the greatest success in amplifying mitochondrial DNA, nuclear microsatellites and ZFX/ZFY loci using at least 25 hairs as starting material and the DNA IQ™ system. The hair snares thus provide a cost-effective and minimally intrusive approach to sample elusive or rare small mammals. We anticipate that this approach will be useful to obtain samples for molecular studies of the ecology, evolution and conservation of small, elusive mammals.


BMC Genomics | 2013

Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome.

Matthew A. Lemay; Philippe Henry; Clayton T. Lamb; Kelsey M. Robson; Michael A. Russello

BackgroundWhen faced with climate change, species must either shift their home range or adapt in situ in order to maintain optimal physiological balance with their environment. The American pika (Ochotona princeps) is a small alpine mammal with limited dispersal capacity and low tolerance for thermal stress. As a result, pikas have become an important system for examining biotic responses to changing climatic conditions. Previous research using amplified fragment length polymorphisms (AFLPs) has revealed evidence for environmental-mediated selection in O. princeps populations distributed along elevation gradients, yet the anonymity of AFLP loci and lack of available genomic resources precluded the identification of associated gene regions. Here, we harnessed next-generation sequencing technology in order to characterize the American pika transcriptome and identify a large suite of single nucleotide polymorphisms (SNPs), which can be used to elucidate elevation- and site-specific patterns of sequence variation.ResultsWe constructed pooled cDNA libraries of O. princeps from high (1400m) and low (300m) elevation sites along a previously established transect in British Columbia. Transcriptome sequencing using the Roche 454 GS FLX titanium platform generated 780 million base pairs of data, which were assembled into 7,325 high coverage contigs. These contigs were used to identify 24,261 novel SNP loci. Using high resolution melt analysis, we developed 17 of these SNPs into genotyping assays, which were validated with independent DNA samples from British Columbia Canada and Oregon State USA. In addition, we detected haplotypes in the NADH dehydrogenase subunit 5 of the mitochondrial genome that were fixed and different among elevations, suggesting that this may be an informative target gene for studying the role of cellular respiration in local adaptation. We also identified contigs that were unique to each elevation, including a high elevation-specific contig that was a positive match with the hemoglobin alpha chain from the plateau pika, a species restricted to high elevation steppes in Asia. Elevation-specific contigs may represent candidate regions subject to differential levels of gene expression along this elevation gradient.ConclusionsTo our knowledge, this is the first broad-scale, transcriptome-level study conducted within the Ochotonidae, providing novel genomic resources for studying pika ecology, behaviour and population history.


Molecular Ecology Resources | 2008

A set of primers for plastid indels and nuclear microsatellites in the invasive plant Heracleum mantegazzianum (Apiaceae) and their transferability to Heracleum sphondylium.

Philippe Henry; Jim Provan; Jérôme Goudet; Antoine Guisan; S. Jahodova; Guillaume Besnard

This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.


Journal of Visualized Experiments | 2011

A Noninvasive Hair Sampling Technique to Obtain High Quality DNA from Elusive Small Mammals

Philippe Henry; Alison Henry; Michael A. Russello

Noninvasive genetic sampling approaches are becoming increasingly important to study wildlife populations. A number of studies have reported using noninvasive sampling techniques to investigate population genetics and demography of wild populations1. This approach has proven to be especially useful when dealing with rare or elusive species2. While a number of these methods have been developed to sample hair, feces and other biological material from carnivores and medium-sized mammals, they have largely remained untested in elusive small mammals. In this video, we present a novel, inexpensive and noninvasive hair snare targeted at an elusive small mammal, the American pika (Ochotona princeps). We describe the general set-up of the hair snare, which consists of strips of packing tape arranged in a web-like fashion and placed along travelling routes in the pikas’ habitat. We illustrate the efficiency of the snare at collecting a large quantity of hair that can then be collected and brought back to the lab. We then demonstrate the use of the DNA IQ system (Promega) to isolate DNA and showcase the utility of this method to amplify commonly used molecular markers including nuclear microsatellites, amplified fragment length polymorphisms (AFLPs), mitochondrial sequences (800bp) as well as a molecular sexing marker. Overall, we demonstrate the utility of this novel noninvasive hair snare as a sampling technique for wildlife population biologists. We anticipate that this approach will be applicable to a variety of small mammals, opening up areas of investigation within natural populations, while minimizing impact to study organisms.


bioRxiv | 2018

The genetic basis of the human-cannabis relationship

Philippe Henry

Cannabis can elicit various reactions in different consumers. In order to shed light on the mechanisms underlying the human-cannabis relationship, we begin to investigate the genetic basis of this differential response. The web-based platform OpenSNP was used to collect selfreported genetic and phenotypic data. Participants either reported a positively or negative affinity to cannabis. A total of 26 individuals were retained, 10 of which indicated several negative responses and the remaining 16 indicating strong affinity for Cannabis. A total of 325’895 single nucleotide polymorphisms (SNPs) were retained. The software TASSEL 5 was used to run a genome-wide association study (GWAS), with a generalized liner model (GLM) and1000 permutations. The analysis yielded a set of 45 SNPs that were significantly associated with the reported affinity to cannabis, including one strong outlier found in the MYO16 gene. A diagnostic process is proposed by which individuals can be assessed for their affinity to cannabis. We believe this type of tool may be helpful in alleviating some of the stigma associated with cannabis use in individuals sensitive to THC and other cannabis constituents such as myrcene, which may potentiate negative responses.

Collaboration


Dive into the Philippe Henry's collaboration.

Top Co-Authors

Avatar

Michael A. Russello

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Chapuis

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Wille

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Brad Hawkes

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelsey M. Robson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge