Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Langella is active.

Publication


Featured researches published by Philippe Langella.


BMC Biology | 2013

Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent

Laura Wrzosek; Sylvie Miquel; Marie-Louise Noordine; Stephan Bouet; Marie Joncquel Chevalier-Curt; Véronique Robert; Catherine Philippe; Chantal Bridonneau; Claire Cherbuy; Catherine Robbe-Masselot; Philippe Langella; Muriel Thomas

BackgroundThe intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron.ResultsB. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation.ConclusionsB. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus.


Gut | 2017

Fungal microbiota dysbiosis in IBD

Harry Sokol; Valentin Leducq; Hugues Aschard; Hang-Phuong Pham; Sarah Jegou; Cecilia Landman; David Cohen; Giuseppina Liguori; Anne Bourrier; Isabelle Nion-Larmurier; Jacques Cosnes; Philippe Seksik; Philippe Langella; David Skurnik; Mathias L. Richard; Laurent Beaugerie

Objective The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Design Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearmans test and distance correlation. Results We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohns disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Conclusions Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis.


Inflammatory Bowel Diseases | 2014

The Commensal Bacterium Faecalibacterium prausnitzii Is Protective in DNBS-induced Chronic Moderate and Severe Colitis Models

Rebeca Martín; Florian Chain; Sylvie Miquel; Jun Lu; Jean-Jacques Gratadoux; Harry Sokol; Elena F. Verdu; Premysl Bercik; Luis G. Bermúdez-Humarán; Philippe Langella

Background:The abundance of Faecalibacterium prausnitzii, an abundant and representative bacterium of Firmicutes phylum, has consistently been observed to be lower in patients with Crohns disease than in healthy individuals. We have shown that both F. prausnitzii and its culture supernatant (SN) have anti-inflammatory and protective effects in a TNBS-induced acute colitis mouse model. Here, we tested the effects of both F. prausnitzii and its SN in moderate and severe DNBS-induced chronic colitis mouse models. Methods:Colitis was induced by intrarectal administration of DNBS. After either 4 or 10 days of recovery (severe and moderate protocols, respectively), groups of mice were intragastrically administered either with F. prausnitzii A2-165 or with its culture SN for 7 or 10 days. Three days before being sacrificed, colitis was reactivated by administration of a lower dose of DNBS. The severity of colitis at the time of being sacrificed was assessed by weight loss and macroscopic and microscopic scores. Myeloperoxidase (MPO) activity, cytokine levels, lymphocyte populations, and changes in microbiota were studied. Results:Intragastric administration of either F. prausnitzii or its SN led to a significant decrease in colitis severity in both severe and moderate chronic colitis models. The lower severity of colitis was associated with down-regulation of MPO, pro-inflammatory cytokines, and T-cell levels. Conclusions:We show, for the first time, protective effects of both F. prausnitzii and its SN during both the period of recovery from chronic colitis and colitis reactivation. These results provide further evidence that F. prausnitzii is an anti-inflammatory bacterium with therapeutic potential for patients with inflammatory bowel disease.


Immunity | 2016

Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects

Romain Daillère; Marie Vétizou; Nadine Waldschmitt; Takahiro Yamazaki; Christophe Isnard; Vichnou Poirier-Colame; Connie P M Duong; Caroline Flament; Patricia Lepage; María Paula Roberti; Bertrand Routy; Nicolas Jacquelot; Lionel Apetoh; Sonia Becharef; Sylvie Rusakiewicz; Philippe Langella; Harry Sokol; Guido Kroemer; David Enot; Antoine Roux; Alexander Eggermont; Eric Tartour; Ludger Johannes; Paul Louis Woerther; Elisabeth Chachaty; Jean-Charles Soria; Encouse B. Golden; Silvia C. Formenti; Magdalena Plebanski; Mutsa Madondo

The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E.xa0hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B.xa0intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E.xa0hirae and B.xa0intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E.xa0hirae and B.xa0intestinihominis represent valuable oncomicrobiotics ameliorating the efficacy of the most common alkylating immunomodulatory compound.


Gut microbes | 2015

Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice

L Laval; Rebeca Martín; Jn Natividad; Florian Chain; Sylvie Miquel; C Desclée de Maredsous; S Capronnier; Harry Sokol; Elena F. Verdu; Jet van Hylckama Vlieg; Luis G. Bermúdez-Humarán; Tamara Smokvina; Philippe Langella

Impaired gut barrier function has been reported in a wide range of diseases and syndromes and in some functional gastrointestinal disorders. In addition, there is increasing evidence that suggests the gut microbiota tightly regulates gut barrier function and recent studies demonstrate that probiotic bacteria can enhance barrier integrity. Here, we aimed to investigate the effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal barrier function. In vitro results using a Caco-2 monolayer cells stimulated with TNF-α confirmed the anti-inflammatory nature of the strain CNCM I-3690 and pointed out a putative role for the protection of the epithelial function. Next, we tested the protective effects of L. rhamnosus CNCM I-3690 in a mouse model of increased colonic permeability. Most importantly, we compared its performance to that of the well-known beneficial human commensal bacterium Faecalibacterium prauznitzii A2-165. Increased colonic permeability was normalized by both strains to a similar degree. Modulation of apical tight junction proteins expression was then analyzed to decipher the mechanism underlying this effect. We showed that CNCM I-3690 partially restored the function of the intestinal barrier and increased the levels of tight junction proteins Occludin and E-cadherin. The results indicate L. rhamnosus CNCM I-3690 is as effective as the commensal anti-inflammatory bacterium F. prausnitzii to treat functional barrier abnormalities.


BMC Microbiology | 2015

Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model

Rebeca Martín; Sylvie Miquel; Florian Chain; Jane M. Natividad; Jennifer Jury; Jun Lu; Harry Sokol; Vassilia Theodorou; Premysl Bercik; Elena F. Verdu; Philippe Langella; Luis G. Bermúdez-Humarán

BackgroundThe human gut houses one of the most complex and abundant ecosystems composed of up to 1013-1014 microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated.ResultsNo significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels.ConclusionsOur results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.


Scientific Reports | 2016

Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses.

Oriana Rossi; Lisette A. van Berkel; Florian Chain; M. Tanweer Khan; Nico Taverne; Harry Sokol; Sylvia H. Duncan; Harry J. Flint; Hermie J. M. Harmsen; Philippe Langella; Janneke N. Samsom; Jerry M. Wells

Faecalibacterium prausnitzii strain A2-165 was previously reported to have anti-inflammatory properties and prevent colitis in a TNBS model. We compared the immunomodulatory properties of strain A2-165 to four different F. prausnitzii isolates and eight abundant intestinal commensals using human dendritic cells (DCs) and mouse BMDCs in vitro. Principal component analysis revealed that the cytokine response to F. prausnitzii A2-165 is distinct from the other strains in eliciting high amounts of IL-10 secretion. The mouse DNBS model of relapsing IBD was used to compare the protective effects of F. prausnitzii A2-165 and Clostridium hathewayi, a low secretor of IL-10, on the Th1-driven inflammatory response to DNBS; attenuation of disease parameters was only observed with F. prausnitzii. In an in vivo mouse model of nasal tolerance to ovalbumin, F. prausnitzii A2-165 enhanced ovalbumin-specific T cell proliferation and reduced the proportion of IFN-γ+ T cells in CLNs. Similarly, in vitro F. prausnitzii A2-165 stimulated BMDCs increased ovalbumin-specific T cell proliferation and reduced the number of IFN-γ+ T cells. These mechanisms may contribute to the anti-inflammatory effects of F. prausnitzii in colitis and support the notion that this abundant bacterium might contribute to immune homeostasis in the intestine via its anti-inflammatory properties.


Gut microbes | 2014

Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii.

Sylvie Miquel; Rebeca Martín; Chantal Bridonneau; Véronique Robert; Harry Sokol; Luis G. Bermúdez-Humarán; Muriel Thomas; Philippe Langella

Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer.


Microbial Cell Factories | 2017

Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria

Jean Guy LeBlanc; Florian Chain; Rebeca Martín; Luis G. Bermúdez-Humarán; Stéphanie Courau; Philippe Langella

The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.


Annals of the Rheumatic Diseases | 2017

Faecal microbiota study reveals specific dysbiosis in spondyloarthritis

Maxime Breban; Julien Tap; Ariane Leboime; Roula Said-Nahal; Philippe Langella; Gilles Chiocchia; Jean-Pierre Furet; Harry Sokol

Objective Altered microbiota composition or dysbiosis is suspected to be implicated in the pathogenesis of chronic inflammatory diseases, such as spondyloarthritis (SpA) and rheumatoid arthritis (RA). Methods 16S ribosomal RNA gene sequencing was performed on faecal DNA isolated from stool samples in two consecutive cross-sectional cohorts, each comprising three groups of adult volunteers: SpA, RA and healthy controls (HCs). In the second study, HCs comprised a majority of aged-matched siblings of patients with known HLA-B27 status. Alpha and beta diversities were assessed using QIIME, and comparisons were performed using linear discriminant analysis effect size to examine differences between groups. Results In both cohorts, dysbiosis was evidenced in SpA and RA, as compared with HCs, and was disease specific. A restriction of microbiota biodiversity was detected in both disease groups. The most striking change was a twofold to threefold increased abundance of Ruminococcus gnavus in SpA, as compared with both RA and HCs that was significant in both studies and positively correlated with disease activity in patients having a history of inflammatory bowel disease (IBD). Among HCs, significant difference in microbiota composition were also detected between HLA-B27+ and HLA-B27 negative siblings, suggesting that genetic background may influence gut microbiota composition. Conclusion Our results suggest that distinctive dysbiosis characterise both SpA and RA and evidence a reproducible increase in R. gnavus that appears specific for SpA and a marker of disease activity. This observation is consistent with the known proinflammatory role of this bacteria and its association with IBD. It may provide an explanation for the link that exists between SpA and IBD.

Collaboration


Dive into the Philippe Langella's collaboration.

Top Co-Authors

Avatar

Luis G. Bermúdez-Humarán

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Harry Sokol

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Rebeca Martín

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florian Chain

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Miquel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Muriel Thomas

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Chatel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Bridonneau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Vasco Azevedo

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge