Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Lashermes is active.

Publication


Featured researches published by Philippe Lashermes.


Molecular Genetics and Genomics | 1999

Molecular characterisation and origin of the Coffea arabica L. genome

Philippe Lashermes; Marie-Christine Combes; J. Robert; Pierre Trouslot; Angélique D'Hont; François Anthony; A. Charrier

Abstract Restriction fragment length polymorphism (RFLP) markers were used in combination with genomic in situ hybridisation (GISH) to investigate the origin of the allotetraploid species Coffea arabica (2n = 44). By comparing the RFLP patterns of potential diploid progenitor species with those of C. arabica, the sources of the two sets of chromosomes, or genomes, combined in C. arabica were identified. The genome organisation of C. arabica was confirmed by GISH using simultaneously labelled total genomic DNA from the two putative genome donor species as probes. These results clearly suggest that C. arabica is an amphidiploid formed by hybridisation between C. eugenioides and C. canephora, or ecotypes related to these diploid species. Our results also indicate low divergence between the two constituent genomes of C. arabica and those of its progenitor species, suggesting that the speciation of C. arabica took place relatively recently. Precise localisation in Central Africa of the site of the speciation of C. arabica, based on the present distribution of the coffee species, appears difficult, since the constitution and extent of tropical forest has varied considerably during the late Quaternary period.


Theoretical and Applied Genetics | 2002

The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers

François Anthony; Marie-Christine Combes; Carlos Astorga; Benoît Bertrand; Giorgio Graziosi; Philippe Lashermes

Abstract.Molecular markers were used to assess polymorphism between and within the genetic bases of coffee (i.e. Typica and Bourbon) spread from Yemen since the early 18th century that have given rise to most arabica cultivars grown world-wide. Eleven Coffea arabica accessions derived from the disseminated bases were evaluated by amplified fragment length polymorphism (AFLP) using 37 primer combinations and simple-sequence repeats (SSRs) produced by six microsatellites. Four cultivars growing in Yemen and 11 subspontaneous accessions collected in the primary centre of diversity of the species were included in the study in order to define their relationship with the accessions derived from the genetic bases of cultivars. One hundred and seven AFLP markers were used to calculate genetic distances and construct a dendrogram. The accessions derived from the disseminated bases were grouped separately, according to their genetic origin, and were distinguished from the subspontaneous accessions. The Yemen cultivars were classified with the Typica-derived accessions. Except for one AFLP marker, all AFLP and SSR markers present in the cultivated accessions were also detected in the subspontaneous accessions. Polymorphism among the subspontaneous accessions was much higher than among the cultivated accessions. It was very low within the genetic bases, confirming the historical documentation on their dissemination. The results enabled a discussion of the genetic diversity reductions that successively occurred during the dissemination of C. arabica from its primary centre of diversity.


Brazilian Journal of Plant Physiology | 2006

Coffee resistance to the main diseases: leaf rust and coffee berry disease

Maria do Céu Silva; Victor Varzea; Leonor Guerra-Guimarães; Helena Gil Azinheira; Diana Fernandez; Anne-Sophie Petitot; Benoît Bertrand; Philippe Lashermes; Michel Nicole

Considerable success has been obtained in the use of classical breeding to control economically important plant diseases, such as the coffee leaf rust and the coffee berry disease (CBD). There is a strong consensus that growing genetically resistant varieties is the most appropriate cost effective means of managing plant diseases and is one of the key components of crop improvement. It has also been recognized that a better knowledge of both, the pathogens and the plant defence mechanisms will allow the development of novel approaches to enhance the durability of resistance. After a brief description of concepts in the field of plant disease resistance, we attempt to give a view of the research progress on coffee leaf rust and CBD concerned with the pathogens infection and variability, coffee breeding for resistance and coffee resistance mechanisms.


Euphytica | 2001

Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers

François Anthony; Benoît Bertrand; O. Quiros; A. Wilches; Philippe Lashermes; Julien Berthaud; André Charrier

Genetic diversity was studied using RAPD markers among119 coffee (Coffea arabica L.) individuals representing 88 accessions derived from spontaneous and subspontaneous trees in Ethiopia, the primary centre of species diversity, six cultivars grown locally in Ethiopia, and two accessions derived from the genetic populations Typica and Bourbon, spread in the 18th century, which gave rise to the most currently grown cultivars. Twenty-nine polymorphic fragments were used to calculate a similarity index and construct dendrograms. The Ethiopian material was separated from the Typica- and Bourbon-derived accessions and classified in four groups: one with most of the collected material from southwestern Ethiopia and three from southern and southeastern Ethiopia. Almost all detected diversity was found in the southwestern group while the southern and southeastern groups presented only 59% of identified markers. The genetic distances were low between the southwestern group and the southern and southeastern groups, and between the southwestern group and the Typica- and Bourbon-derived accessions. The cultivated coffee derived from the genetic populations Typica and Bourbon appeared little differentiated from wild coffee growing in the southwest. The results supported the hypothesis that southwestern Ethiopian coffee trees could have been introduced recently in the south and southeast. A separate analysis of the 80accessions classified in the southwestern group allowed identifying particular spontaneous- and subspontaneous-derived accessions and redundancies in the collected material from southwestern Ethiopia. RAPD markers did not detect any within-collection polymorphism except for two trees that were identified as off-types in the CATIE field genebank.


Euphytica | 1998

Identification and genetic diversity analysis of date palm (Phoenix dactylifera L.) varieties from Morocco using RAPD markers

My Hassan Sedra; Philippe Lashermes; Pierre Trouslot; Marie-Christine Combes

Genetic variation among 43 date palm (Phoenix dactylifera L.) accessions, including 37 accessions from Morocco and 6 cultivars from Iraq and Tunisia, was studied using Random Amplified Polymorphic DNA (RAPD) markers. The pre-screening of 123 primers on four genotypes allowed selection of 19 primers which revealed polymorphism and gave reproducible results. All 43 analysed genotypes were distinguishable by their band patterns. RAPD technology therefore appears very effective for identifying accessions of date palm. RAPD-based genetic distance was used to determine the relationships between the accessions. The grouping-association identified by cluster analysis was rather weak. However, morphologically similar varieties clustered together. A relatively low polymorphism and a lack of evident organisation are observed among the date palm varieties grown in Morocco. This could be related to the mode of introduction and maintenance of the Moroccan date palm germplasm involving limited foundation germplasm, exchange of cultivars between plantations, and periodic development of new recombinant cultivars following sexual reproduction.


Theoretical and Applied Genetics | 1997

Phylogenetic relationships of coffee-tree species ( Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA

Philippe Lashermes; Marie-Christine Combes; Pierre Trouslot; André Charrier

Abstract Phylogenetic relationships of Coffea species were estimated from the sequences of the internal transcribed spacer (ITS 2) region of nuclear ribosomal DNA. The ITS 2 region of 37 accessions belonging to 26 Coffea taxa and to three Psilanthus species was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The level of variation was high enough to make the ITS 2 a useful tool for phylogenetic reconstruction. However, an unusual level of intraspecific variation was observed leading to some difficulty in interpreting rDNA sequence divergences. Sequences were analysed using Wagner parsimony as well as the neighbour-joining distance method. Coffea taxa were divided into several major groups which present a strong geographical correspondence (i.e. Madagascar, East Africa, Central Africa and West Africa). This organisation is well supported by cytogenetic evidence. On the other hand, the results were in contradiction with the present classification of coffee-tree taxa into two genera, namely Coffea and Psilanthus. Furthermore, additivity of parental rDNA types was not observed in the allotetraploid species C. arabica.


Euphytica | 1996

Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica

Philippe Lashermes; Pierre Trouslot; François Anthony; Marie-Christine Combes; André Charrier

SummaryRandom amplified polymorphic DNA (RAPD) markers have been successfully employed to analyse the genetic diversity among cultivated and subspontaneous accessions of Coffea arabica. The narrow genetic base of commercial cultivars was confirmed. On the other hand, a relatively large genetic diversity was observed within the germplasm collection demonstrating the importance of collecting missions. Results suggested an East-West differentiation in Ethiopia, the primary centre of diversification of C. arabica. The large heterosis effect reported in intergroup hybrids could be related to such genetic differentiation. RAPD method appeared to be effective in resolving genetic variations and in grouping germplasm in C. arabica.


Theoretical and Applied Genetics | 2000

Molecular analysis of introgressive breeding in coffee (Coffea arabica L.).

Philippe Lashermes; Sandra Andrzejewski; Benoît Bertrand; Marie-Christine Combes; Stéphane Dussert; Giorgio Graziosi; Pierre Trouslot; François Anthony

Abstract Nineteen arabica coffee introgression lines (BC1F4) and two accessions derived from a spontaneous interspecific cross (i.e. Timor Hybrid) between Coffea arabica (2n=4x=44) and C. canephora (2n=2x=22) were analysed for the introgression of C. canephora genetic material. The Timor Hybrid-derived genotypes were evaluated by AFLP, using 42 different primer combinations, and compared to 23 accessions of C. arabica and 8 accessions of C. canephora. A total of 1062 polymorphic fragments were scored among the 52 accessions analysed. One hundred and seventy-eight markers consisting of 109 additional bands (i.e. introgressed markers) and 69 missing bands distinguished the group composed of the Timor Hybrid-derived genotypes from the accessions of C. arabica. AFLP therefore seemed to be an extremely efficient technique for DNA marker generation in coffee as well as for the detection of introgression in C. arabica. The genetic diversity observed in the Timor Hybrid-derived genotypes appeared to be approximately double that in C. arabica. Although representing only a small proportion of the genetic diversity available in C. canephora, the Timor Hybrid obviously constitutes a considerable source of genetic diversity for arabica breeding. Analysis of genetic relationships among the Timor Hybrid-derived genotypes suggested that introgression was not restricted to chromosome substitution but also involved chromosome recombinations. Furthermore, the Timor Hybrid-derived genotypes varied considerably in the number of AFLP markers attributable to introgression. In this way, the introgressed markers identified in the analysed arabica coffee introgressed genotypes were estimated to represent from 9% to 29% of the C. canephora genome. Nevertheless, the amount of alien genetic material in the introgression arabica lines remains substantial and should justify the development of adapted breeding strategies.


Theoretical and Applied Genetics | 2003

Impact of the Coffea canephora gene introgression on beverage quality of C. arabica

Benoît Bertrand; Bernard Guyot; François Anthony; Philippe Lashermes

Abstract Lines of Coffea arabica derived from the Timor Hybrid (hybrid between C. arabica and C. canephora) are resistant to coffee leaf rust (Hemileia vastatrix) and to the nematode Meloidogyne exigua. The introgression of C. canephora resistance genes is suspected of causing a drop in beverage quality. Coffee samples from pure lines, compared in a Trial 1, and from F1 hybrids and parental lines from a half-diallel trial in a Trial 2, were studied for beverage quality, chemical composition and amount of introgressed genetic material. Chemical analyses (caffeine, chlorogenic acids, fat, trigonelline, sucrose) were carried out with near-infrared spectrometry by reflectance of green coffee. The number of amplified fragment length polymorphic (AFLP) markers introgressed from the Timor Hybrid varied from 1 to 37 for the lines studied. There were significant differences between lines for all of the biochemical compounds analysed and for the acidity and the overall standard of the beverage. Two lines (T17927, T17924) were significantly poorer than the controls for sucrose and beverage acidity. T17924 also had more chlorogenic acids and was poorer for the overall standard. However, two highly introgressed lines, T17934 and T17931 (25 and 30 AFLP markers, respectively), did not differ from the non-introgressed controls. There were no correlations between the number of AFLP markers and the chemical contents or beverage attributes. Significant correlations were found between the performance of the parents and their general combining ability for beverage quality. It was concluded that it should be possible to find lines with both the desired resistance genes and good beverage quality. Selection can avoid accompanying the introgression of resistance genes with a drop in beverage quality.


Euphytica | 1997

Identification of RAPD markers for resistance to coffee berry disease, Colletotrichum kahawae, in arabica coffee

Charles O. Agwanda; Philippe Lashermes; Pierre Trouslot; Marie-Christine Combes; A. Charrier

Resistance to Coffee Berry Disease (CBD) in Arabica coffee is controlled by at least three genes which are present in the varieties Hibrido de Timor (T gene), Catimor (T gene), Rume Sudan (R and k genes) and K7 (k gene). Hibrido de Timor, Catimor and Rume Sudan are genetically distant from most of the commercial cultivars, and the utilisation of molecular markers would greatly improve the efficiency of breeding programmes concerned with CBD resistance. The objectives of the present work were therefore: (1) to identify random amplified polymorphic DNA (RAPD) markers associated with CBD resistance and (2) to identify markers which could be used to select against the genetic background of the resistance donors. Identification of RAPD markers was carried out in three steps. The first step involved the comparison of the RAPD profiles between the susceptible cultivars and the resistant donors. This was followed by comparison of the RAPD profiles between resistant and susceptible types of each donor variety. The final step involved assay of the resistance markers in the first and the second backcrosses between these donors and the recurrent parent. High genetic variability was demonstrated in Catimor, and to some extent in Rume Sudan. Three RAPD markers were shown to be closely associated to the T gene. Attempts to identify markers associated with the R and k genes were less rewarding. The implications of the current observations in relation to breeding for CBD resistance in Arabica coffee are discussed.

Collaboration


Dive into the Philippe Lashermes's collaboration.

Researchain Logo
Decentralizing Knowledge