Philippe Lenormand
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Lenormand.
The EMBO Journal | 1999
Anne Brunet; Danièle Roux; Philippe Lenormand; Stephen Dowd; Stephen M. Keyse; Jacques Pouysségur
Mitogen‐activated protein kinase (MAPK) modules, composed of three protein kinases activated by successive phosphorylation, are involved in the signal transduction of a wide range of extracellular agents. In mammalian cells, mitogenic stimulation triggers the translocation of p42/p44MAPK from the cytoplasm to the nucleus, whereas the other protein kinases of the module remain cytosolic. Since MAPK has been shown to phosphorylate and activate nuclear targets, such as the transcription factor Elk1, it has been proposed, but not yet demonstrated, that MAPK nuclear translocation could represent a critical step in signal transduction. In this study, we sequestered p42/p44MAPK in the cytoplasm by the expression of a catalytically inactive form of cytoplasmic MAP kinase phosphatase (MKP‐3/Pyst‐1). Sequestering MAPK in the cytoplasm did not alter its activation or its ability to phosphorylate cytoplasmic substrates of MAPK (p90RSK1 or an engineered cytoplasmic form of Elk1). In contrast, prevention of MAPK nuclear translocation strongly inhibited Elk1‐dependent gene transcription and the ability of cells to reinitiate DNA replication in response to growth factors. Thus the relocalization of MAPK to the nucleus appears to be an important regulatory step for mitogen‐induced gene expression and cell cycle re‐entry.
Molecular and Cellular Biology | 2008
Renaud Lefloch; Jacques Pouysségur; Philippe Lenormand
ABSTRACT The proteins ERK1 and ERK2 are highly similar, are ubiquitously expressed, and share activators and substrates; however, erk2 gene invalidation is lethal in mice, while erk1 inactivation is not. We ablated ERK1 and/or ERK2 by RNA interference and explored their relative roles in cell proliferation and immediate-early gene (IEG) expression. Reducing expression of either ERK1 or ERK2 lowered IEG induction by serum; however, silencing of only ERK2 slowed down cell proliferation. When both isoforms were silenced simultaneously, compensating activation of the residual pool of ERK1/2 masked a more deleterious effect on cell proliferation. It was only when ERK2 activation was clamped at a limiting level that we demonstrated the positive contribution of ERK1 to cell proliferation. We then established that ERK isoforms are activated indiscriminately and that their expression ratio correlated exactly with their activation ratio. Furthermore, we determined for the first time that ERK1 and ERK2 kinase activities are indistinguishable in vitro and that erk gene dosage is essential for survival of mice. We propose that the expression levels of ERK1 and ERK2 drive their apparent biological differences. Indeed, ERK1 is dispensable in some vertebrates, since it is absent from chicken and frog genomes despite being present in all mammals and fishes sequenced so far.
Journal of Biological Chemistry | 2007
Céline Jousse; Christiane Deval; Anne-Catherine Maurin; Laurent Parry; Yoan Cherasse; Cédric Chaveroux; Renaud Lefloch; Philippe Lenormand; Alain Bruhat; Pierre Fafournoux
The integrated stress response (ISR) is defined as a highly conserved response to several stresses that converge to the induction of the activating transcription factor 4 (ATF4). Because an uncontrolled response may have deleterious effects, cells have elaborated several negative feedback loops that attenuate the ISR. In the present study, we describe how induction of the human homolog of Drosophila tribbles (TRB3) attenuates the ISR by a negative feedback mechanism. To investigate the role of TRB3 in the control of the ISR, we used the regulation of gene expression by amino acid limitation as a model. The enhanced production of ATF4 upon amino acid starvation results in the induction of a large number of target genes like CHOP (CAAT/enhancer-binding protein-homologous protein), asparagine synthetase (ASNS), or TRB3. We demonstrate that TRB3 overexpression inhibits the transcriptional induction of CHOP and ASNS whereas TRB3 silencing induces the expression of these genes both under normal and stressed conditions. In addition, transcriptional profiling experiments show that TRB3 affects the expression of many ISR-regulated genes. Our results also suggest that TRB3 and ATF4 belong to the same protein complex bound to the sequence involved in the ATF4-dependent regulation of gene expression by amino acid limitation. Collectively, our data identify TRB3 as a negative feedback regulator of the ATF4-dependent transcription and participates to the fine regulation of the ISR.
Journal of Biological Chemistry | 2010
Diane S. Lidke; Fang Huang; Janine N. Post; Bernd Rieger; Julie L. Wilsbacher; James L. Thomas; Jacques Pouysségur; Thomas M. Jovin; Philippe Lenormand
Upon activation, ERKs translocate from the cytoplasm to the nucleus. This process is required for the induction of many cellular responses, yet the molecular mechanisms that regulate ERK nuclear translocation are not fully understood. We have used a mouse embryo fibroblast ERK1-knock-out cell line expressing green fluorescent protein (GFP)-tagged ERK1 to probe the spatio-temporal regulation of ERK1. Real time fluorescence microscopy and fluorescence correlation spectroscopy revealed that ERK1 nuclear accumulation increased upon serum stimulation, but the mobility of the protein in the nucleus and cytoplasm remained unchanged. Dimerization of ERK has been proposed as a requirement for nuclear translocation. However, ERK1-Δ4, the mutant shown consistently to be dimerization-deficient in vitro, accumulated in the nucleus to the same level as wild type (WT), indicating that dimerization of ERK1 is not required for nuclear entry and retention. Consistent with this finding, energy migration Förster resonance energy transfer and fluorescence correlation spectroscopy measurements in living cells did not detect dimerization of GFP-ERK1-WT upon activation. In contrast, the kinetics of nuclear accumulation and phosphorylation of GFP-ERK1-Δ4 were slower than that of GFP-ERK1-WT. These results indicate that the differential shuttling behavior of the mutant is a consequence of delayed phosphorylation of ERK by MEK rather than dimerization. Our data demonstrate for the first time that a delay in cytoplasmic activation of ERK is directly translated into a delay in nuclear translocation.
Journal of Biological Chemistry | 2007
Géraldine Rocher; Claire Letourneux; Philippe Lenormand; Françoise Porteu
The importance of PP2A in the regulation of Akt/PKB activity has long been recognized but the nature of the holoenzyme involved and the mechanisms controlling dephosphorylation are not yet known. We identified IEX-1, an early gene product with proliferative and survival activities, as a specific inhibitor of B56 regulatory subunit-containing PP2A. IEX-1 inhibits B56-PP2A activity by allowing the phosphorylation of B56 by ERK. This leads to sustained ERK activation. IEX-1 has no effect on PP2A containing other B family subunits. Thus, studying IEX-1 contribution to signaling should help the discovery of new pathways controlled by B56-PP2A. By using overexpression and RNA interference, we show here that IEX-1 increases Akt/PKB activity in response to various growth factors by preventing Akt dephosphorylation on both Thr308 and Ser473 residues. PP2A-B56β and γ subunits have the opposite effect and reverse IEX-1-mediated Akt activation. The effect of IEX-1 on Akt is ERK-dependent. Indeed: (i) a IEX-1 mutant deficient in ERK binding had no effect on Akt; (ii) ERK dominant-negative mutants reduced IEX-1-mediated increase in pAkt; (iii) a B56β mutant that cannot be phosphorylated in the ERK·IEX-1 complex showed an enhanced ability to compete with IEX-1. These results identify B56-containing PP2A holoenzymes as Akt phosphatases. They suggest that IEX-1 behaves as a general inhibitor of B56 activity, enabling the control of both ERK and Akt signaling downstream of ERK.
Cell Cycle | 2009
Renaud Lefloch; Jacques Pouysségur; Philippe Lenormand
Regulating ERK activity is essential for normal cell proliferation to occur. In mammals and most vertebrates ERK activity is provided by ERK1 and ERK2 that are highly similar, ubiquitously expressed and share activators and substrates. By combining single and double silencings of ERK1 and ERK2 we recently demonstrated that the apparent dominant role of ERK2 to regulate cell proliferation was due to its markedly higher expression level than ERK1. The contribution of ERK1 was revealed when ERK2 activation was clamped to avoid compensating over-activation of ERK2. We found no evidences in the literature for insulated isoform-specific modules in the Ras/Raf/MEK signaling cascade that could activate specifically ERK1 or ERK2. Obviously in frogs all signal integration and fine modulation provided by three Ras and three Raf isoforms is conducted by only one MEK and one ERK isoform. In mammals, ERK1 and ERK2 display similar specific activities and are activated respectively to their expression levels. After integrating signals from Ras, Raf and MEK isoforms, ERK1 and ERK2 regulate positively cell proliferation according to their expression levels.
Oncogene | 2002
Marie Knockaert; Philippe Lenormand; Nathanael S. Gray; Peter G. Schultz; Jacques Pouysségur; Laurent Meijer
Chemical inhibitors of cyclin-dependent kinases (CDKs) have a great therapeutic potential against various proliferative and neurodegenerative disorders. Intensive screening of a combinatorial chemistry library of 2,6,9-trisubstituted purines has led to the identification of purvalanol, one of the most potent and selective CDK inhibitors to date. In preliminary studies, this compound demonstrates definite anti-mitotic properties, consistent with its nanomolar range efficiency towards purified CDK1 and CDK2. However, the actual intracellular targets of purvalanol remain to be identified, and a method for the determination of its in vivo selectivity was developed. In this technique, cell extracts were screened for purvalanol-interacting proteins by affinity chromatography on immobilized inhibitor. In addition to CDK1, p42/p44 MAPK were found to be two major purvalanol-interacting proteins in five different mammalian cell lines (CCL39, PC12, HBL100, MCF-7 and Jurkat cells), suggesting the generality of the purvalanol/p42/p44 MAPK interaction. The Chinese hamster lung fibroblast cell line CCL39 was used as a model to investigate the anti-proliferative properties of purvalanol. The compound inhibited cell growth with a GI50 value of 2.5 μM and induced a G2/M block when added to exponentially growing cells. It did not appear to trigger massive activation of caspase. We next tested whether CDKs and p42/p44 MAPK were actually targeted by the compound in vivo. p42/p44 MAPK activity was visualized using an Elk–Gal4 luciferase reporter system and CDK1 activity was detected by the phosphonucleolin level. When cells were treated with purvalanol, p42/p44 MAPK and CDK1 activities were inhibited in a dose-dependent manner. Furthermore, purvalanol inhibited the nuclear accumulation of p42/p44 MAPK, an event dependent on the catalytic activity of these kinases. We conclude that the anti-proliferative properties of purvalanol are mediated by inhibition of both p42/p44 MAPK and CDKs. These observations highlight the potency of moderate selectivity compounds and encourage the search for new therapeutics which simultaneously target distinct but relevant pathways of cell proliferation.
Molecular and Cellular Biology | 1992
Philippe Lenormand; David Pribnow; Karin D. Rodland; Bruce E. Magun
The VL30 family of defective murine retroviruses consists of 100 to 200 members, of which fewer than 5% appear to be transcriptionally active. A genomic clone of the transcriptionally active VL30 element RVL-3 was identified and sequenced. Genetic analysis indicated that a triple-repeat sequence within the RVL-3 long terminal repeat is capable of functioning as an inducible enhancer element responding to a variety of agonists. In Rat-1 fibroblasts, the ability of the RVL-3 enhancer to mediate induction of gene expression from a heterologous promoter in response to either epidermal growth factor (EGF) or phorbol ester treatment required coelevation of intracellular calcium. Two CArG boxes present in the triple-repeat sequence appeared to exert a negative effect on gene expression, as mutation of these sequences elevated the basal level of expression observed without altering the fold induction in response to either EGF or protein kinase C activation. In the presence of these CArG elements, mutation of AP-1-like sites adjacent to the CArG elements significantly inhibited the ability of either EGF or phorbol esters to induce gene expression. The effect of mutating these AP-1-like sites was relieved by simultaneous mutation of the CArG sites, indicating that interactions among these sites modulate RVL-3 expression. Mutational analysis and gel mobility shift experiments have identified a third sequence within the VL30 triple-repeat element that is required for the induction of gene expression and serves as a binding site for nuclear proteins. Sequence comparisons indicate that this enhancer element has not been described previously.
Archive | 1993
Gilles Pagès; Anne Brunet; J-C. Chambard; G. L’Allemain; Philippe Lenormand; Jacques Pouysségur
Reinitiation of DNA synthesis in resting cells is the result of cooperation between multiple signalling pathways. For example, our work on the mode of action of α-thrombin as a sole mitogen for Chinese hamster lung fibroblasts has demonstrated that α-thrombin stimulates phospholipases (PIP2-PLC, PC-PLD, PLA2) and inhibits adenylyl cyclase, implicating activation of pertussis toxin-sensitive and insensitive G proteins. In addition, these pathways synergize with receptor-activated tyrosine kinases (IGF-I, FGF). A striking observation is that the synergism between growth factors, detected at the late stage of DNA replication, is mirrored initially at the level of stimulation of so called ‘early mitogenic events’ (Na-H antiporter activation, S6 phosphorylation, early gene transcription). These results suggest the existence of common early key step(s) for integrating signalling pathways. Here we substantiate the notion that MAP kinases, p42 mapk and p44 mapk , are indeed good candidates for integrating and transmitting growth factor signals to the nucleus. To investigate structure-function relationships, we raised specific antibodies able to discriminate between both isoforms and cloned and expressed in hamster fibroblasts an epitope-tagged p44 mapk . Firstly, we showed that p42 mapk and p44 mapk are similarly activated in that both display, in response to α-thrombin or serum, a rapid, biphasic and persistent pattern of activation that parallels dual phosphorylation of threonine and tyrosine. Synergistic mitogens α-thrombin/FGF or serotonin/FGF) synergistically activate MAP kinases, particularly the second phase. Secondly, both kinase isoforms are associated with the nucleus. For instance, p44 mapk is cytoplasmic in GO-arrested cells and rapidly translocates into the nucleus in response to growth factors. Thirdly, we found that overexpression of the wild type form of p44 mapk has no effect on growth control. In contrast, overexpression of a dead-kinase mutant of p44 mapk (T192A or Y194F) behaves as a dominant-negative mutant. It strongly inhibited activation of endogenous MAP kinases and led to inhibition of cell proliferation. We therefore conclude that activation of this ‘mitogenic kinase cascade’: Raf-1 ⇒ MAP kinase kinase ⇒ MAP kinases ⇒ S6 kinase that seems to operate both in the cytosol and nucleus is obligatory for growth factor-induced GO to S-phase transition. We predict that constitutive activated forms of either MAP kinase kinase or MAP kinase should induce an oncogenic phenotype at least in fibroblasts.
Biochimica et Biophysica Acta | 2007
Jean-Claude Chambard; Renaud Lefloch; Jacques Pouysségur; Philippe Lenormand