Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Linscheid is active.

Publication


Featured researches published by Philippe Linscheid.


Critical Care Medicine | 2004

Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes.

Philippe Linscheid; Dalma Seboek; Dominik J. Schaer; Henryk Zulewski; Ulrich Keller; Beat Müller

Objective:To explore the roles of peripheral blood mononuclear cells (PBMCs) and PBMC-derived macrophages in sepsis-related increased procalcitonin and calcitonin gene-related peptide (CGRP) I production. Design:Prospective, in vitro primary human cell culture study and human tissue samples gene expression analysis. Setting:University hospital research laboratories. Patients:Cells from healthy donors and septic patients. Interventions:PBMCs were obtained from healthy donors. Isolation of pure monocyte cultures was performed by magnetic depletion of nonmonocyte cells from PBMCs. Adipose tissue biopsies and circulating leukocytes were collected from septic patients. Expressions of calcitonin messenger RNA and CGRP I messenger RNA were analyzed using reverse transcriptase-polymerase chain reaction and quantitative real-time polymerase chain reaction. Supernatant procalcitonin and CGRP protein content were determined by ultrasensitive chemiluminometric and radioimmunoassays, respectively. Measurements and Main Results:PBMCs expressed and secreted procalcitonin and CGRP within 3–5 hrs after adherence to endothelial cells or plastic surfaces. This induction was transient, as it was not detectable after 18 hrs. No calcitonin or CGRP I messenger RNA was observed in leukocytes obtained from septic patients with markedly increased serum procalcitonin concentrations. Stimulation with cytokines, endotoxin, or Escherichia coli did not induce expression of calcitonin and CGRP I messenger RNA in PBMC-derived macrophages. However, inflammatory factors released from activated macrophages induced a marked expression of procalcitonin and CGRP in co-cultured human adipocytes. Conclusions:The adhesion-induced, transient expression and secretion of procalcitonin and CGRP in vitro may play an important role during monocyte adhesion and migration in vivo. PBMC-derived macrophages may contribute to the marked increase in circulating procalcitonin by recruiting parenchymal cells within the infected tissue, as exemplified with adipocytes.


Circulation | 1998

Regulation of 6-Pyruvoyltetrahydropterin Synthase Activity and Messenger RNA Abundance in Human Vascular Endothelial Cells

Philippe Linscheid; Andreas Schaffner; Nenad Blau; Gabriele Schoedon

BACKGROUND The nitric oxide synthase cofactor tetrahydrobiopterin (BH4) is involved in the regulation of endothelium-dependent vascular functions mediated by nitric oxide. Vascular endothelial cells synthesize and secrete large amounts of BH4 on cytokine activation. There is scant knowledge about molecular mechanisms of cytokine-triggered BH4 production in endothelial cells. METHODS AND RESULTS Pteridine production, mRNA expression of GTP cyclohydrolase (GTPCH) and 6-pyruvoyltetrahydropterin synthase (PTPS) (both key enzymes of BH4 biosynthesis), and PTPS activity were studied in human umbilical vein endothelial cells (HUVECs) exposed to inflammatory cytokines. BH4 levels were </=140-fold enhanced on treatment of HUVECs with combined interferon-gamma/tumor necrosis factor-alpha/interleukin-1 (IFN/TNF/IL-1). Specific PTPS activity was approximately 3-fold higher in cytokine-treated HUVECs than in untreated cells. Reverse-transcription/limiting-dilution polymerase chain reaction analysis showed that in response to IFN/TNF/IL-1, mRNA abundance of GTPCH and PTPS was increased approximately 64-fold and 10-fold, respectively. CONCLUSIONS The present study demonstrates for the first time the cytokine-dependent regulation of PTPS, the second enzyme in BH4 synthesis. Although GTPCH is believed to be the rate-limiting step, control of endothelial PTPS expression by cytokines may play an important role in regulating BH4-dependent nitric oxide production in the vascular system.


Biochemical Pharmacology | 2003

Diminished production of nitric oxide synthase cofactor tetrahydrobiopterin by rosiglitazone in adipocytes

Philippe Linscheid; Ulrich Keller; Nenad Blau; Dominik J. Schaer; Beat Müller

Increased nitric oxide (NO) synthesis has been proposed to participate in the generation of insulin resistance in adipose and muscle tissues. Therefore, we examined the potential rate-limiting role of tetrahydrobiopterin (BH4) in cytokine-induced NO synthesis, and the effect of peroxisome proliferator activated receptor-gamma (PPARgamma) activation using the insulin-sensitizer rosiglitazone on cytokine-induced BH4 synthesis in 3T3-L1 adipocytes. Our data indicate that modulated availability of the mandatory nitric oxide synthase (NOS) cofactor BH4 affected cytokine-induced NO generation. Semiquantitative linear range reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated that rosiglitazone not only reduced inducible nitric oxide synthase (iNOS) mRNA transcription, but also guanosine triphosphate cyclohydrolase (GTPCH), the rate-limiting and controlling step of BH4 synthesis. Accordingly, intracellular BH4 concentration was reduced by 45% following rosiglitazone treatment. Furthermore, we observed a transient inhibitory effect of natural PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PJ2) on cytokine-mediated iNOS and GTPCH induction. Thus, the inhibition of cytokine-induced NO synthesis by rosiglitazone is at least in part attributable to reduced availability of BH4, the synthesis of which might represent a potential new target in the treatment of type 2 diabetes and insulin resistance.


Hormone and Metabolic Research | 2010

Insulin Resistance and Increased Lipolysis in Bone Marrow Derived Adipocytes Stimulated with Agonists of Toll-like Receptors

Marco Franchini; E. Monnais; D. Seboek; T. Radimerski; Eric Zini; Karin Kaufmann; Thomas A. Lutz; Claudia E. Reusch; Mathias Ackermann; B. Muller; Philippe Linscheid

Our objectives were to identify Toll-like receptors (TLRs) in human bone marrow derived adipocytes, to test specific TLR agonists for their ability to induce a proinflammatory response, and to investigate possible metabolic effects after TLR activation, in particular, those associated with insulin resistance and lipolysis. Mesenchymal stem cells were isolated from human bone marrow and differentiated into adipocytes. Total RNA before or after stimulation with agonists specific for TLR was extracted for analysis of expression of TLRs proinflammatory signals and molecules involved in glucose metabolism (IRS-1 and GLUT4). Furthermore, cytokine protein expression was measured from cell lysates. Finally, insulin induced glucose uptake and lipolysis were measured. Human bone marrow-derived adipocytes express TLR1-10. They react to stimulation with specific ligands with expression of inflammatory markers (IL-1beta, IL-6, TNFalpha, IL-8, MCP-1) at the RNA and protein levels. IRS-1 and GLUT4 expression was downregulated after stimulation with the TLR4 and TLR3 specific ligands LPS and poly (I:C), respectively. Insulin-induced glucose uptake was decreased and lipolysis increased. We conclude that adipocytes express TLR 1-10 and react to agonists specific for TLR 1-6. As a consequence proinflammatory cytokine are induced, in particular, IL-6, IL-8, and MCP-1. Since stimulation is followed by decreased insulin-induced glucose uptake and increased lipolysis we conclude that TLRs may be important linking molecules in the generation of insulin resistance in fat tissue.


Diabetes, Obesity and Metabolism | 2008

Increase in high molecular weight adiponectin by bariatric surgery-induced weight loss

Philippe Linscheid; M. Christ-Crain; R. Stoeckli; Claudia E. Reusch; Thomas A. Lutz; B. Müller; U. Keller

Aim:  To determine the changes in adiponectin multimers upon marked weight loss.


Immunology Letters | 1998

Induction of tetrahydrobiopterin synthesis in human umbilical vein smooth muscle cells by inflammatory stimuli.

Roland B. Walter; Philippe Linscheid; Nenad Blau; Lucja Kierat; Andreas Schaffner; Gabriele Schoedon

Tetrahydrobiopterin (BH4) is an obligatory cofactor and regulator of nitric oxide synthases (NOS). We evaluated the biosynthesis of BH4 in human umbilical vein smooth muscle cells (HUVSMC). Trace amounts of BH4 were found intra- and extracellularly in untreated cells. When HUVSMC were activated by individual inflammatory stimuli (IL-1beta, TNFalpha, IFNgamma or LPS), both intra- and extracellular levels of BH4 increased significantly, with TNFalpha being the most potent single stimulus. Combined inflammatory cytokines synergized in the induction of an up to 600-fold increase of BH4 synthesis. Addition of LPS to the cytokine mixture led to a further increase of BH4 synthesis. Neopterin, a product of the first intermediate in BH4 biosynthesis, was also raised, but to a much lesser extent. The increase of BH4 synthesis was paralleled by an enhanced expression of isoform-1 (the only isoform coding for the active enzyme) of GTP cyclohydrolase I in cytokine treated cells. Our results show for the first time that BH4 biosynthesis is strongly induced by combinations of inflammatory stimuli in HUVSMC. The importance of BH4-dependent NO synthesis in HUVSMC needs, however, additional detailed studies.


Veterinary Journal | 2010

Quantitative real-time PCR detection of insulin signalling-related genes in pancreatic islets isolated from healthy cats.

Eric Zini; Marco Franchini; M. Osto; Andrea Vögtlin; Franco Guscetti; Philippe Linscheid; Karin Kaufmann; Brigitte Sigrist; Mathias Ackermann; Thomas A. Lutz; Claudia E. Reusch

The cat has recently been proposed as a valuable model for type 2 diabetes mellitus (T2DM), because feline diabetes shares several similarities with the disease in humans. Impaired beta-cell function, decreased beta-cell mass, insulin resistance that is often related to obesity, and pancreatic amyloid deposition, are among these common features. In this study, and to further develop the cat as a model of T2DM, feline pancreatic islets were isolated and real-time PCR quantification of mRNA transcripts of genes central to beta-cell function and survival established. In particular, mRNA quantification systems were determined for insulin, the insulin enhancer pancreatic duodenal homeobox-1 (PDX-1), the insulin suppressor CCAAT/enhancer binding protein-beta (C/EBPbeta), glucose transporter isoform 2 (GLUT2), Fas receptor, the caspase-8 inhibitor FLIP (FLICE [caspase-8]-inhibitory protein) and two chemokines, interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1). Pancreatic islets were isolated by collagenase digestion from healthy cat donors. Partial feline mRNA sequences were determined for PDX-1, C/EBPbeta, GLUT2 and FLIP using primers identified from conserved regions of human, dog and rat mRNA. These novel and the previously available sequences (insulin, Fas receptor, IL-8 and MCP-1) were used to design feline-specific primers suitable for real-time PCR in isolated pancreatic islets. The adopted protocol of collagenase digestion yielded pancreatic islets that were frequently surrounded by acinar cells. Quantification of mRNA transcripts was simple and reproducible in healthy cats. Characterisation of genes related to insulin signalling in cats will prove useful to better understand the pathogenesis of feline diabetes and possibly of human T2DM.


Pteridines | 2002

Differential Inhibition of Constitutive and Inducible Nitric Oxide Synthase in Vascular Endothelial Cells by Analogues of Tetrahydrobiopterin

Nicolas J. Mueller; Roland B. Walter; Philippe Linscheid; Andreas Schaffner; Gabriele Schoedon

Abstract In the vasculature, a physiologic production of nitric oxide (NO) is maintained by endothelial nitric oxide synthase (eNOS). Induction of inducible nitric oxide synthase (ÍNOS) under inflammatory conditions (e.g. septic shock) resulting in high levels of nitric oxide (NO) is believed to be partly responsible for the pathophysiologic changes in the vascular system that occur under inflammatory conditions (e.g. septic shock). Both NOS isoforms are dependent on the obligatory cofactor tetrahydrobiopterin (BH4). We investigated the selectivity and potency of the BH4 analogues 4-amino-BH4 and 5-methyl-BH4 in inhibiting eNOS and iNOS in a murine vascular endothelial cell (MVEC) model expressing either eNOS or iNOS under physiologic and inflammatory conditions, respectively. Exogenous BH4 and its precursor sepiapterin both enhanced physiologic eNOS activity in resting MVEC, while 4-amino-BH4 slightly inhibited eNOS. 5-methyl-BH4 did not have any effect on eNOS. BH4, sepi - apterin, and 5-methyi-BH4 had no effect on iNOS in inflammatory activated MVEC. In contrast, 4-amino-BH4 selectively inhibited iNOS with a potency comparable to the unselective NOS inhibitor Νω-monomethyl-L-argimne (L-NMMA). The present study demonstrates that 4-amino-BH4 selectively and potently inhibits iNOS in vascular endothelial cells, while its effect on eNOS is minimal. The selective inhibition of iNOS is a promising strategy for the treatment of inflammatory conditions with high output of NO. Further in vivo studies are required to determine whether inhibition of NO production by analogues of BH4 offers any advantage compared to inhibition by L-arginine analogues.


Biochemical and Biophysical Research Communications | 2006

Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

Katharina Timper; Dalma Seboek; Michael Eberhardt; Philippe Linscheid; Mirjam Christ-Crain; Ulrich Keller; Beat Müller; Henryk Zulewski


Endocrinology | 2003

In Vitro and in Vivo Calcitonin I Gene Expression in Parenchymal Cells: A Novel Product of Human Adipose Tissue

Philippe Linscheid; Dalma Seboek; Eric S. Nylen; Igor Langer; Mirjam Schlatter; Kenneth L. Becker; Ulrich Keller; Beat Müller

Collaboration


Dive into the Philippe Linscheid's collaboration.

Top Co-Authors

Avatar

Beat Müller

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Henryk Zulewski

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge