Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Mateo is active.

Publication


Featured researches published by Philippe Mateo.


The Journal of Physiology | 2007

Activation of AMP kinase α1 subunit induces aortic vasorelaxation in mice

Françoise Goirand; Myriam Solar; Yoni Athea; Benoit Viollet; Philippe Mateo; Dominique Fortin; Jocelyne Leclerc; J.A. Hoerter; Renée Ventura-Clapier; Anne Garnier

Vasodilatation is a vital mechanism of systemic blood flow regulation that occurs during periods of increased energy demand. The AMP‐dependent protein kinase (AMPK) is a serine/threonine kinase that is activated by conditions that increase the AMP‐to‐ATP ratio, such as exercise and metabolic stress. We hypothesized that AMPK could trigger vasodilatation and participate in blood flow regulation. Rings of thoracic aorta were isolated from C57Bl6 mice and mice deficient in the AMPK catalytic α1 (AMPKα1−/−) or α2 (AMPKα2−/−) subunit and their littermate controls, and mounted in an organ bath. Aortas were preconstricted with phenylephrine (1 μm) and activation of AMPK was induced by addition of increasing concentrations of 5‐aminoimidazole‐4‐carboxamide‐1‐β‐d‐ribofuranoside (AICAR). AICAR (0.1–3 mm) dose‐dependently induced relaxation of precontracted C57BL6, AMPKα1+/+ and α2+/+ aorta (P < 0.001, n= 5–7 per group). This AICAR induced vasorelaxation was not inhibited by the addition of adenosine receptor antagonists. Moreover, when aortic rings were freed of endothelium by gentle rubbing, AICAR still induced aortic ring relaxation, suggesting a direct effect of AICAR on smooth muscle cells. When aortic rings were pretreated with l‐NMMA (30 μm) to inhibit nitric oxide synthase activity, AICAR still induced relaxation. Western blot analysis of C57Bl6 mice denuded aorta showed that AMPK was phosphorylated after incubation with AICAR and that AMPKα1 was the main catalytic subunit expressed. Finally, AICAR‐induced relaxation of aortic rings was completely abolished in AMPKα1−/− but not AMPKα2−/− mice. Taken together, the results show that activation of AMPKα1 but not AMPKα2 is able to induce aortic relaxation in mice, in an endothelium‐ and eNOS‐independent manner.


PLOS ONE | 2011

Resveratrol Improves Survival, Hemodynamics and Energetics in a Rat Model of Hypertension Leading to Heart Failure

Stéphanie Rimbaud; Matthieu Ruiz; Jérôme Piquereau; Philippe Mateo; Dominique Fortin; Vladimir Veksler; Anne Garnier; Renée Ventura-Clapier

Heart failure (HF) is characterized by contractile dysfunction associated with altered energy metabolism. This study was aimed at determining whether resveratrol, a polyphenol known to activate energy metabolism, could be beneficial as a metabolic therapy of HF. Survival, ventricular and vascular function as well as cardiac and skeletal muscle energy metabolism were assessed in a hypertensive model of HF, the Dahl salt-sensitive rat fed with a high-salt diet (HS-NT). Resveratrol (18 mg/kg/day; HS-RSV) was given for 8 weeks after hypertension and cardiac hypertrophy were established (which occurred 3 weeks after salt addition). Resveratrol treatment improved survival (64% in HS-RSV versus 15% in HS-NT, p<0.001), and prevented the 25% reduction in body weight in HS-NT (P<0.001). Moreover, RSV counteracted the development of cardiac dysfunction (fractional shortening −34% in HS-NT) as evaluated by echocardiography, which occurred without regression of hypertension or hypertrophy. Moreover, aortic endothelial dysfunction present in HS-NT was prevented in resveratrol-treated rats. Resveratrol treatment tended to preserve mitochondrial mass and biogenesis and completely protected mitochondrial fatty acid oxidation and PPARα (peroxisome proliferator-activated receptor α) expression. We conclude that resveratrol treatment exerts beneficial protective effects on survival, endothelium–dependent smooth muscle relaxation and cardiac contractile and mitochondrial function, suggesting that resveratrol or metabolic activators could be a relevant therapy in hypertension-induced HF.


Pflügers Archiv: European Journal of Physiology | 2010

Epac stimulation induces rapid increases in connexin43 phosphorylation and function without preconditioning effect

Nicolas Duquesnes; Mickael Derangeon; Mélanie Métrich; Alexandre Lucas; Philippe Mateo; Lin Li; Eric Morel; Frank Lezoualc’h; Bertrand Crozatier

It has been recently shown that β-adrenergic receptors are able to activate phospholipase C via the cyclic adenosine monophosphate-binding protein Epac. This new interconnection may participate in isoproterenol (Iso)-induced preconditioning. We evaluated here whether Epac could induce PKCε activation and could play a role in ischemic preconditioning through the phosphorylation of connexin43 (Cx43) and changes in gap junctional intercellular communication (GJIC). In cultured rat neonatal cardiomyocytes, we showed that in response to Iso and 8-CPT, a specific Epac activator, PKCε content was increased in particulate fractions of cell lysates independently of protein kinase A (PKA). This was associated with an increased Cx43 phosphorylation. Both Iso and 8-CPT induced an increase in GJIC that was blocked by the PKC inhibitor bisindolylmaleimide. Interestingly, inhibition of PKA partly suppressed both Iso-induced increases in Cx43 phosphorylation and in GJIC. The same PKCε-dependent Cx43 phosphorylation by β-adrenergic stimulation via Epac was found in adult rat hearts. However, in contrast with Iso that induced a preconditioning effect, perfusion of isolated hearts with 8-CPT prior to ischemia failed to improve the post-ischemia functional recovery. In conclusion, Epac stimulation induces PKCε activation and Cx43 phosphorylation with an increase in GJIC, but Epac activation does not induce preconditioning to ischemia in contrast with β-adrenergic stimulation.


Biophysical Journal | 2000

Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes.

Frederic Joubert; Brigitte Gillet; J.L. Mazet; Philippe Mateo; J.-C. Beloeil; J.A. Hoerter

The interpretation of creatine kinase (CK) flux measured by (31)P NMR magnetization transfer in vivo is complex because of the presence of competing reactions, metabolite compartmentation, and CK isozyme localization. In the isovolumic perfused rat heart, we considered the influence of both ATP compartmentation and ATP-P(i) exchange on the forward (F(f): PCr --> ATP) and reverse (F(r)) CK fluxes derived from complete analysis of inversion transfer. Although F(f) should equal F(r) because of the steady state, in both protocols when PCr (inv-PCr) or ATP (inv-ATP) was inverted and the contribution of ATP-P(i) was masked by saturation of P(i) (sat-P(i)), F(f)/F(r) significantly differed from 1 (0.80 +/- 0.06 or 1.32 +/- 0.06, respectively, n = 5). These discrepancies could be explained by a compartment of ATP (f(ATP)) not involved in CK. Consistently, neglecting ATP compartmentation in the analysis of CK in vitro results in an underestimation of F(f)/F(r) for inv-PCr and its overestimation for inv-ATP. Both protocols gave access to f(ATP) if the system was adequately analyzed. The fraction of ATP not involved in CK reaction in a heart performing medium work amounts to 20-33% of cellular ATP. Finally, the data suggest that the effect of sat-P(i) might not result only from the masking of ATP-P(i) exchange.


Cardiovascular Research | 2014

Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes

Zeineb Haj Slimane; Ibrahim Bedioune; Patrick Lechêne; Audrey Varin; Florence Lefebvre; Philippe Mateo; Valérie Domergue-Dupont; Matthias Dewenter; Wito Richter; Marco Conti; Ali El-Armouche; Jin Zhang; Rodolphe Fischmeister; Grégoire Vandecasteele

AIMSnThe cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes.nnnMETHODS AND RESULTSnCytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus.nnnCONCLUSIONnOur study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation.


Biochemical and Biophysical Research Communications | 2009

Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus.

Mounia Belmokhtar; Nour Elhouda Bouanani; Abderrahim Ziyyat; Hassane Mekhfi; Mohamed Bnouham; Mohamed Aziz; Philippe Mateo; Rodolphe Fischmeister; Abdelkhaleq Legssyer

Cistus ladaniferus L. (Cistaceae) is a medicinal plant originated from the Mediterranean region which exerts different pharmacological effects. In the present study, our goal was to examine whether the plant possessed antihypertensive properties. Aqueous extract of Cistus leaves (AEC, 500mg/kg/day) reduced systemic blood pressure (SBP) in two animal models of hypertension, the l-NAME and renovascular two kidney-one clip (2K-1C) hypertensive rats. In the former, AEC prevented the increase in SBP when co-administered with l-NAME during four weeks (164+/-3mm Hg in l-NAME vs. 146+/-1mm Hg in l-NAME+AEC, p<0.001). In the latter, AEC reversed the increase in SBP when administered during four weeks after installation of the hypertension (146+/-5mm Hg with AEC vs. 179+/-6mm Hg without, p<0.05). AEC treatment also reversed the endothelial dysfunction observed in both animal models of hypertension. A direct effect on cardiac and vascular tissue was also tested by examining the contractile effects of AEC in rat isolated aortic rings and Langendorff perfused hearts. AEC (10mg/L) had no effect on left ventricular developed pressure and heart rate in isolated perfused heart. However, AEC produced a strong relaxation of pre-contracted rat aortic rings (80+/-2% relaxation, n=25). When the rings were denuded from endothelium or were incubated with 1mM Nomega-nitro-l-arginine (l-NNA), the relaxant effect of AEC was lost. We conclude that C. ladaniferus possesses antihypertensive properties which are mainly due to an endothelium-dependent vasodilatory action.


The Journal of General Physiology | 2015

Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes

Gema Ruiz-Hurtado; Linwei Li; María Fernández-Velasco; Angélica Rueda; Florence Lefebvre; Yueyi Wang; Philippe Mateo; Cécile Cassan; Barnabas Gellen; Jean Pierre Benitah; Ana M. Gómez

Alterations in the intracellular environment lead to decreased frequency of Ca2+ sparks in a model of heart failure despite enhanced ryanodine receptor activity.


Molecular and Cellular Biochemistry | 1999

Mitochondrial creatine kinase functional development in post-natal rat skeletal muscle. A combined polarographic/31P NMR study

Florence Kernec; Lydie Nadal; Chantal Rocher; Philippe Mateo; Jacques D. de Certaines; Elisabeth Le Rumeur

Mitochondrial creatine kinase (Mi-CK) function in viable mitochondria from developing rat skeletal muscle was assessed both by polarographic measurements of creatine-induced respiration and 31P NMR spectroscopy measurements of phosphocreatine (PCr) synthesis. Creatine-induced respiration was observed in very young rats and increased by 50% to 35 days of age. PCr synthesis was present in 7 day old animals and increased by 300% reaching levels measured in 35 day and adult muscle. Unlike reports showing Mi-CK enzymatic activities but no mitochondrial function in several situations, a concomitant progression of enzymatic activity and mitochondrial function was evidenced during the developmental stages of skeletal muscle Mi-CK in altricious animals. These results correlated with the progressive pattern of muscle differentiation during development of motricity in such animals. The observation that Mi-CK is functional in skeletal muscle mitochondria very early after birth, strongly favors the notion that adaptations in skeletal muscle of Mi-CK knock-out mice occur early.


PLOS ONE | 2016

Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

Bochra Tourki; Philippe Mateo; Jessica Morand; Mohamed Elayeb; Diane Godin-Ribuot; Naziha Marrakchi; Elise Belaidi; Erij Messadi

Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.


Journal of Molecular and Cellular Cardiology | 2017

Cobalamin and folate protect mitochondrial and contractile functions in a murine model of cardiac pressure overload

Jérôme Piquereau; Maryline Moulin; Giada Zurlo; Philippe Mateo; Mélanie Gressette; Jean-Louis Paul; Christophe Lemaire; Renée Ventura-Clapier; Vladimir Veksler; Anne Garnier

PGC-1α, a key regulator of energy metabolism, seems to be a relevant therapeutic target to rectify the energy deficit observed in heart failure (HF). Since our previous work has shown positive effects of cobalamin (Cb) on PGC-1α cascade, we investigate the protective role of Cb in pressure overload-induced myocardial dysfunction. Mice were fed with normal diet (ND) or with Cb and folate supplemented diet (SD) 3weeks before and 4weeks after transverse aortic constriction (TAC). At the end, left ventricle hypertrophy and drop of ejection fraction were significantly lower in SD mice than in ND mice. Alterations in mitochondrial oxidative capacity, fatty acid oxidation and mitochondrial biogenesis transcription cascade were markedly improved by SD. In SD-TAC mice, lower expression level of the acetyltransferase GCN5 and upregulation of the methyltransferase PRMT1 were associated with a lower protein acetylation and a higher protein methylation levels. This was accompanied by a sustained expression of genes involved in mitochondrial biogenesis transcription cascade (Tfam, Nrf2, Cox1 and Cox4) after TAC in SD mice, suggesting a preserved activation of PGC-1α; this could be at least partly due to corrected acetylation/methylation status of this co-activator. The beneficial effect of the treatment would not be due to an effect of Cb and folate on oxidative stress or on homocysteinemia, which were unchanged by SD. These results showed that Cb and folate could protect the failing heart by preserving energy status through maintenance of mitochondrial biogenesis. It reinforces the concept of a metabolic therapy of HF.

Collaboration


Dive into the Philippe Mateo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Garnier

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gema Ruiz-Hurtado

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Cassan

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge