Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Muller is active.

Publication


Featured researches published by Philippe Muller.


Cell | 2003

The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth

Niko Geldner; Nadine Anders; Hanno Wolters; Jutta Keicher; Wolfgang Kornberger; Philippe Muller; Alain Delbarre; Takashi Ueda; Akihiko Nakano; Gerd Jürgens

Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Both PIN1 localization and auxin transport are also sensitive to BFA. In this paper, we show that GNOM localizes to endosomes and is required for their structural integrity. We engineered a BFA-resistant version of GNOM. In plants harboring this fully functional GNOM variant, PIN1 localization and auxin transport are no longer sensitive to BFA, while trafficking of other proteins is still affected by the drug. Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways.


The EMBO Journal | 1999

AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues

Alan Marchant; Joanna Kargul; Sean T. May; Philippe Muller; Alain Delbarre; Catherine Perrot-Rechenmann; Malcolm J. Bennett

Plants employ a specialized transport system composed of separate influx and efflux carriers to mobilize the plant hormone auxin between its site(s) of synthesis and action. Mutations within the permease‐like AUX1 protein significantly reduce the rate of carrier‐mediated auxin uptake within Arabidopsis roots, conferring an agravitropic phenotype. We are able to bypass the defect within auxin uptake and restore the gravitropic root phenotype of aux1 by growing mutant seedlings in the presence of the membrane‐permeable synthetic auxin, 1‐naphthaleneacetic acid. We illustrate that AUX1 expression overlaps that previously described for the auxin efflux carrier, AtPIN2, using transgenic lines expressing an AUX1 promoter::uidA (GUS) gene. Finally, we demonstrate that AUX1 regulates gravitropic curvature by acting in unison with the auxin efflux carrier to co‐ordinate the localized redistribution of auxin within the Arabidopsis root apex. Our results provide the first example of a developmental role for the auxin influx carrier within higher plants and supply new insight into the molecular basis of gravitropic signalling.


Planta | 1996

Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells

Alain Delbarre; Philippe Muller; Viviane Imhoff; Jean Guern

Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.


The Plant Cell | 2008

Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco

Nils Braun; Joanna Wyrzykowska; Philippe Muller; Karine M. David; Daniel Couch; Catherine Perrot-Rechenmann; Andrew Fleming

AUXIN BINDING PROTEIN1 (ABP1) has long been characterized as a potentially important mediator of auxin action in plants. Analysis of the functional requirement for ABP1 during development was hampered because of embryo lethality of the null mutant in Arabidopsis thaliana. Here, we used conditional repression of ABP1 to investigate its function during vegetative shoot development. Using an inducible cellular immunization approach and an inducible antisense construct, we showed that decreased ABP1 activity leads to a severe retardation of leaf growth involving an alteration in cell division frequency, an altered pattern of endocycle induction, a decrease in cell expansion, and a change in expression of early auxin responsive genes. In addition, local repression of ABP1 activity in the shoot apical meristem revealed an additional role for ABP1 in cell plate formation and cell shape. Moreover, cells at the site of presumptive leaf initiation were more sensitive to ABP1 repression than other regions of the meristem. This spatial context-dependent response of the meristem to ABP1 inactivation and the other data presented here are consistent with a model in which ABP1 acts as a coordinator of cell division and expansion, with local auxin levels influencing ABP1 effectiveness.


computational intelligence | 2002

Topological Spatio–Temporal Reasoning and Representation

Philippe Muller

We present here a theory of motion from a topological point of view, in a symbolic perspective. Taking space–time histories of objects as primitive entities, we introduce temporal and topological relations on the thus defined space–time to characterize classes of spatial changes. The theory thus accounts for qualitative spatial information, dealing with underspecified, symbolic information when accurate data are not available or unnecessary. We show that these structures give a basis for commonsense spatio–temporal reasoning by presenting a number of significant deductions in the theory. This can serve as a formal basis for languages describing motion events in a qualitative way.


Plant Physiology | 1994

The rolB Gene of Agrobacterium rhizogenes Does Not Increase the Auxin Sensitivity of Tobacco Protoplasts by Modifying the Intracellular Auxin Concentration

Alain Delbarre; Philippe Muller; Viviane Imhoff; Hélène Barbier-Brygoo; Christophe Maurel; Nathalie Leblanc; Catherine Perrot-Rechenmann; Jean Guern

Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125–3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.


The Plant Cell | 2010

The RNA Binding Protein Tudor-SN Is Essential for Stress Tolerance and Stabilizes Levels of Stress-Responsive mRNAs Encoding Secreted Proteins in Arabidopsis

Nicolas Frei dit Frey; Philippe Muller; Fabien Jammes; Dimosthenis Kizis; Jeffrey Leung; Catherine Perrot-Rechenmann; Michele Wolfe Bianchi

This study describes the role of Tudor-SN in optimal stress tolerance throughout the life cycle of Arabidopsis. It finds evidence suggestive of new mechanisms regulating the metabolism of mRNAs entering the secretory pathway. Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.


Nature Communications | 2013

Auxin-Binding Protein 1 is a negative regulator of the SCF TIR1/AFB pathway

Alexandre Tromas; Sébastien Paque; Vérène Stierlé; Anne-Laure Quettier; Philippe Muller; Esther Lechner; Pascal Genschik; Catherine Perrot-Rechenmann

Auxin is a major plant hormone that controls most aspects of plant growth and development. Auxin is perceived by two distinct classes of receptors: transport inhibitor response 1 (TIR1, or auxin-related F-box (AFB)) and auxin/indole-3-acetic acid (AUX/IAA) coreceptors, that control transcriptional responses to auxin, and the auxin-binding protein 1 (ABP1), that controls a wide variety of growth and developmental processes. To date, the mode of action of ABP1 is still poorly understood and its functional interaction with TIR1/AFB-AUX/IAA coreceptors remains elusive. Here we combine genetic and biochemical approaches to gain insight into the integration of these two pathways. We find that ABP1 is genetically upstream of TIR1/AFBs; ABP1 knockdown leads to an enhanced degradation of AUX/IAA repressors, independently of its effects on endocytosis, through the SCF(TIR1/AFB) E3 ubiquitin ligase pathway. Combining positive and negative regulation of SCF ubiquitin-dependent pathways might be a common mechanism conferring tight control of hormone-mediated responses.


Planta | 2000

Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells

Viviane Imhoff; Philippe Muller; Jean Guern; Alain Delbarre

Abstract.u2002Active auxin transport in plant cells is catalyzed by two carriers working in opposite directions at the plasma membrane, the influx and efflux carriers. A role for the efflux carrier in polar auxin transport (PAT) in plants has been shown from studies using phytotropins. Phytotropins have been invaluable in demonstrating that PAT is essential to ensure polarized and coordinated growth and to provide plants with the capacity to respond to environmental stimuli. However, the function of the influx carrier at the whole-plant level is unknown. Our work aims to identify new auxin-transport inhibitors which could be employed to investigate its function. Thirty-five aryl and aryloxyalkylcarboxylic acids were assayed for their ability to perturb the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (1-NAA) in suspension-cultured tobacco (Nicotiana tabacum L.) cells. As 2,4-D and 1-NAA are preferentially transported by the influx and efflux carriers, respectively, accumulation experiments utilizing synthetic auxins provide independant information on the activities of both carriers. The majority (60%) of compounds half-inhibited the carrier-mediated influx of [14C]2,4-D at concentrations of less than 10u2009μM. Most failed to interfere with [3H]NAA efflux, at least in the short term. Even though they increasingly perturbed auxin efflux when given a prolonged treatment, several compounds were much better at discriminating between influx and efflux carrier activities than naphthalene-2-acetic acid which is commonly employed to investigate influx-carrier properties. Structure-activity relationships and factors influencing ligand specificity with regard to auxin carriers are discussed.


The Plant Cell | 2014

AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in Arabidopsis

Sébastien Paque; Grégory Mouille; Laurie Grandont; David Alabadí; Cyril Gaertner; Arnaud Goyallon; Philippe Muller; Catherine Primard-Brisset; Rodnay Sormani; Miguel A. Blázquez; Catherine Perrot-Rechenmann

This work examines the consequences of inactivation of the auxin receptor AUXIN BINDING PROTEIN1 and identifies alterations in the transcriptome, cell expansion, cell wall remodeling, and xyloglucan structure. It also reveals the importance of modifications of xyloglucan structure in the cell wall for cell expansion. Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.

Collaboration


Dive into the Philippe Muller's collaboration.

Top Co-Authors

Avatar

Nicholas Asher

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laure Vieu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Delbarre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Perrot-Rechenmann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge