Philippe Schollhammer
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Schollhammer.
Inorganic Chemistry | 2009
Salah Ezzaher; Jean-François Capon; Frédéric Gloaguen; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin; Nelly Kervarec
Studies of the protonation of [Fe2(CO)4(kappa2-PNP)(mu-pdt)] (1; PNP = (Ph2PCH2)2NCH3) by HBF4.Et2O showed that the nature of the reaction product depends on whether the reaction is conducted in acetone or in dichloromethane. In acetone, an N-protonated form, 2, is isolated. Tautomerization of 2 in CH2Cl2 gives rise to a mu-hydride species 3. Variable-temperature NMR experiments have been performed to clarify the processes involved.
Inorganic Chemistry | 2010
Kévin Charreteur; Mohamed Kdider; Jean-François Capon; Frédéric Gloaguen; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin
Two hexacarbonyl diiron compounds featuring dithiolate bridges with strong electron-withdrawing groups (CO(2)Me, tetrachloro-biphenyl) were synthesized and structurally characterized. Electrochemical study of these compounds demonstrates that such electron-withdrawing groups have a pronounced effect on both the reduction potentials and the electron transfer process. The reduced forms of these compounds catalyze the reduction of protons in dichloromethane. However, the tetrachloro-biphenyl derivative is the only one able to work in the potential range of its primary reduction process. A catalytic reaction scheme is proposed.
Chemistry: A European Journal | 2013
Sabrina Munery; Jean-François Capon; Luca De Gioia; Catherine Elleouet; Claudio Greco; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin; Giuseppe Zampella
Rotated geometry: The first example of a dinuclear iron(I)-iron(I) complex featuring a fully rotated geometry related to the active site of [Fe-Fe] hydrogenase is reported.
Coordination Chemistry Reviews | 1998
François Y. Pétillon; Philippe Schollhammer; Jean Talarmin; Kenneth W. Muir
Abstract The synthesis, reactivity, structures and electrochemistry of dimolybdenum complexes jointly stabilized by cyclopentadienyl and bridging thiolate ligands are reviewed. The complexes involved are principally those of molybdenum(II) and molybdenum(III) and they contain from one to four thiolate bridges. It is shown that their reactivity can be controlled by varying the electronic and steric properties of the ancillary ligands and that they provide bimetallic sites for the activation and transformation of various substrates.
Chemistry: A European Journal | 2012
Sondès Lounissi; Giuseppe Zampella; Jean-François Capon; Luca De Gioia; Fatma Matoussi; Sélim Mahfoudhi; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin
The behavior of [Fe(2)(CO)(4)(κ(2)-PNP(R))(μ-pdt)] (PNP(R) =(Ph(2)PCH(2))(2)NR, R=Me (1), Ph (2); pdt=S(CH(2))(3)S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNP(R) appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF(3)SO(3)H or CH(3)SO(3)H; the cation with a bridging hydride ligand, 1 μH(+) (R=Me) or 2 μH(+) (R=Ph) is obtained rapidly. Only 1 μH(+) can be protonated at the nitrogen atom of the PNP chelate by HBF(4)·Et(2)O or CF(3)SO(3)H, which results in a positive shift of the proton reduction by approximately 0.15 V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η(2)-H(2) species in the Fe(I)Fe(II) state. When R=Ph, the bridging hydride cation 2 μH(+) cannot be protonated at the amine function by HBF(4)·Et(2)O or CF(3)SO(3)H, and protonation at the N atom of the one-electron reduced analogue is also less favored than that of a S atom of the partially de-coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2 μH(+). The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (k(obs) ≈4-7 s(-1)) because of the slow intramolecular proton migration and H(2) release steps identified by the theoretical study.
Chemistry: A European Journal | 2002
Nathalie Le Grand; Kenneth W. Muir; François Y. Pétillon; Christopher J. Pickett; Philippe Schollhammer; Jean Talarmin
The reduction of diazene complexes [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(2)-H-N=N-R)](+) (R=Ph (3 a); Me (3 b)) and of the hydrazido(2-) derivative [Mo(2)Cp(2)(mu-SMe)(3)[mu-eta(1)-N=N(Me)H]](+) (1 b) has been studied by cyclic voltammetry, controlled-potential electrolysis, and coulometry in THF. The electrochemical reduction of 3 a in the presence of acid leads to cleavage of the N=N bond and produces aniline and either the amido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-NH(2))] 4 or the ammine complex [Mo(2)Cp(2)(mu-SMe)(3)(NH(3))(X)] 5, depending on the initial concentration of acid (HX=HTsO or CF(3)CO(2)H). The N=N bond of the methyldiazene analogue 3 b is not cleaved under the same conditions. The ability of 3 a but not 3 b to undergo reductive cleavage of the N=N bond is attributed to electronic control of the strength of the Mo-N(R) bond by the R group. The electrochemical reduction of the methylhydrazido(2-) compound 1 b in the presence of HX also results in cleavage of the N=N bond, with formation of methylamine, 4 (or 5) and the methyldiazenido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(1)-N=N-Me)]. Formation of the last of these complexes indicates that two mechanisms (N=N bond cleavage and possibly H(2) production) are operative. A pathway for the reduction of N(2) at a dinuclear site of FeMoco is proposed on the basis of these results.
Journal of Inorganic Biochemistry | 2010
Youtao Si; Kévin Charreteur; Jean-François Capon; Frédéric Gloaguen; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin
The purpose of the present study was to evaluate the use of a non-innocent ligand as a surrogate of the anchored [4Fe4S] cubane in a synthetic mimic of the [FeFe] hydrogenase active site. Reaction of 2,3-bis(diphenylphosphino) maleic anhydride (bma) with [Fe(2)(CO)(6)(mu-pdt)] (propanedithiolate, pdt=S(CH(2))(3)S) in the presence of Me(3)NO-2H(2)O afforded the monosubstituted derivative [Fe(2)(CO)(5)(Me(2)NCH(2)PPh(2))(mu-pdt)] (1). This results from the decomposition of the bma ligand and the apparent C-H bond cleavage in the released trimethylamine. Reaction under photolytic conditions afforded [Fe(2)(CO)(4)(bma)(mu-pdt)] (2). Compounds 1 and 2 were characterized by IR, NMR and X-ray diffraction. Voltammetric study indicated that the primary reduction of 2 is centered on the bma ligand.
Dalton Transactions | 2004
Nolwenn Cabon; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin; Kenneth W. Muir
The reaction of mono- or dichloro-dimolybdenum(III) complexes [Mo2Cp2(mu-SMe)2(mu-Cl)(mu-Y)] (Cp=eta5-C5H5; 1, Y=SMe; 2, Y=PPh2; 3, Y=Cl) with NaBH4 at room temperature gave in high yields tetrahydroborato (8), hydrido (9) or metallaborane (12) complexes depending on the ancillary ligands. The correct formulation of derivatives and has been unambigously determined by X-ray diffraction methods. That of the hydrido compound 9 has been established in solution by NMR analysis and confirmed by an X-ray study of the mu-azavinylidene derivative [Mo2Cp2(mu-SMe)2(mu-PPh2)(mu-N=CHMe)] (10) obtained from the insertion of acetonitrile into the Mo-H bond of 9. Reaction of NaBH4 with nitrile derivatives, [Mo2Cp2(mu-SMe)4-n(CH3CN)2n]n+(5, n=1; 6 n=2), afforded the tetrahydroborato compound 8, together with a mu-azavinylidene species [Mo2Cp2(mu-SMe)3(mu-N=CHMe)](14), when n=1, and the metallaborane complex 12, together with a mixed borohydrato-azavinylidene derivative [Mo2Cp2(mu-SMe)2(mu-BH4)(mu-N=CHMe)] (13), when n=2. The molecular structures of these complexes have been confirmed by X-ray analysis. Preparations of some of the starting complexes (3 and 4) are also described, as are the molecular structures of the precursors [Mo2Cp2(mu-SMe)2(mu-X)(mu-Y)] (1, X/Y=Cl/SMe; 2, X/Y=Cl/PPh2; 4, X/Y=SMe/PPh2).
Inorganic Chemistry | 2011
Dounia Chouffai; Giuseppe Zampella; Jean-François Capon; Luca De Gioia; Frédéric Gloaguen; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin
The one-electron oxidation of the diiron complex [Fe(2)(CO)(4)(κ(2)-dppe)(μ-pdt)] (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); pdt = S(CH(2))(3)S) has been investigated in the absence and in the presence of P(OMe)(3), by both electrochemical and theoretical methods, to shed light on the mechanism and the location of the oxidatively induced structure change. While cyclic voltammetric experiments did not allow to discriminate between a two-step (EC) and a concerted, quasi-reversible (QR) process, density functional theory (DFT) calculations favor the first option. When P(OMe)(3) is present, the one-electron oxidation produces singly and doubly substituted cations, [Fe(2)(CO)(4-n){P(OMe)(3)}(n)(κ(2)-dppe)(μ-pdt)](+) (n = 1: 2(+); n = 2: 3(+)) following mechanisms that were investigated in detail by DFT. Although the most stable isomer of 1(+) and 2(+) (and 3(+)) show a rotated Fe(dppe) center, binding of P(OMe)(3) occurs at the neighboring iron center of both 1(+) and 2(+). The neutral compound 3 was obtained by controlled-potential reduction of the corresponding cation, while 2 was quantitatively produced by reaction of 3 with CO. The CO dependent conversion of 3 into 2 as well as the 2(+) ↔ 3(+) interconversion were examined by DFT.
Inorganic Chemistry | 2010
Pierre-Yves Orain; Jean-François Capon; Frédéric Gloaguen; François Y. Pétillon; Philippe Schollhammer; Jean Talarmin; Giuseppe Zampella; Luca De Gioia; Thierry Roisnel
The substitution of PPh(3) for a carbonyl group at the {Fe(CO)(3)} moiety in [Fe(2)(CO)(4)(kappa(2)-phen)(mu-pdt)] results in the formation of the trisubstituted complex [Fe(2)(CO)(3)(PPh(3))(kappa(2)-phen)(mu-pdt)] (2). Unlike its tetracarbonyl precursor, the protonation of 2 at low temperature does not afford any apparent transient terminal hydride species. Hydride formation for [Fe(2)(CO)(3)(L)(kappa(2)-phen)(mu-pdt)] (L = PPh(3), CO) species is also studied by density functional theory calculations, which show that activation barriers to give terminal and bridging hydrides can be remarkably close for this class of organometallic compounds.