Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Verbeke is active.

Publication


Featured researches published by Philippe Verbeke.


Infection and Immunity | 2006

Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells.

Özlem Yilmaz; Philippe Verbeke; Richard J. Lamont; David M. Ojcius

ABSTRACT Porphyromonas gingivalis, an important periodontal pathogen, is an effective colonizer of oral tissues. The organism successfully invades, multiplies in, and survives for extended periods in primary gingival epithelial cells (GECs). It is unknown whether P. gingivalis resides in the cytoplasm of infected cells throughout the infection or can spread to adjacent cells over time. We developed a technique based on flow cytofluorometry and fluorescence microscopy to study propagation of the organism at different stages of infection of GECs. Results showed that P. gingivalis spreads cell to cell and that the amount of spreading increases gradually over time. There was a very low level of propagation of bacteria to uninfected cells early in the infection (3 h postinfection), but there were 20-fold and 45-fold increases in the propagation rate after 24 h and 48 h, respectively, of infection. Immunofluorescence microscopy of infected cells suggested that intercellular translocation of P. gingivalis may be mediated through actin-based membrane protrusions, bypassing the need for release of bacteria into extracellular medium. Consistent with these observations, cytochalasin D treatment of infected cells resulted in significant inhibition of bacterial spreading. This study shows for the first time that P. gingivalis disseminates from cell to cell without passing through the extracellular space. This mechanism of spreading may allow P. gingivalis to colonize oral tissues without exposure to the humoral immune response.


Infection and Immunity | 2004

Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Contributes to Survival of Primary Epithelial Cells Infected with the Periodontal Pathogen Porphyromonas gingivalis

Özlem Yilmaz; Thomas Jungas; Philippe Verbeke; David M. Ojcius

ABSTRACT Porphyromonas gingivalis, an important periodontal pathogen, infects primary gingival epithelial cells (GECs). Despite the large number of bacteria that replicate inside the GECs, the host cell remains viable. We demonstrate that P. gingivalis triggers rapid and reversible surface phosphatidylserine exposure through a mechanism requiring caspase activation. However, after 1 day of infection, the bacteria no longer induce phosphatidylserine externalization and instead protect infected cells against apoptosis. Infection exerts its effect at the level of mitochondria, as P. gingivalis also blocks depolarization of the mitochondrial transmembrane potential and cytochrome c release. Interestingly, protein kinase B/Akt is phosphorylated during infection, which can be blocked with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Suppression of the PI3K/Akt pathway following staurosporine treatment results in mitochondrial-membrane depolarization, cytochrome c release, DNA fragmentation, and increased apoptosis of infected GECs. Thus, P. gingivalis stimulates early surface exposure of phosphatidylserine, which could downmodulate the inflammatory response, while also promoting host cell survival through the PI3K/Akt pathway.


Immunity | 2003

Inhibition of chlamydial infectious activity due to P2X7R-Dependent phospholipase D activation

Robson Coutinho-Silva; Lynn Stahl; Marie Noëlle Raymond; Thomas Jungas; Philippe Verbeke; Geoffrey Burnstock; Toni Darville; David M. Ojcius

Chlamydia trachomatis survives within host cells by inhibiting fusion between Chlamydia vacuoles and lysosomes. We show here that treatment of infected macrophages with ATP leads to killing of chlamydiae through ligation of the purinergic receptor, P2X(7)R. Chlamydial killing required phospholipase D (PLD) activation, as PLD inhibition led to rescue of chlamydiae in ATP-treated macrophages. However, there was no PLD activation nor chlamydial killing in ATP-treated P2X(7)R-deficient macrophages. P2X(7)R ligation exerts its effects by promoting fusion between Chlamydia vacuoles and lysosomes. P2X(7)R stimulation also resulted in macrophage death, but fusion with lysosomes preceded macrophage death and PLD inhibition did not prevent macrophage death. These results suggest that P2X(7)R ligation leads to PLD activation, which is directly responsible for inhibition of infection.


PLOS Pathogens | 2006

Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival

Philippe Verbeke; Lynn Welter-Stahl; Songmin Ying; Jon Hansen; Georg Häcker; Toni Darville; David M. Ojcius

Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3β can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3β co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3β does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3β to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.


Biochimica et Biophysica Acta | 2000

Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells

Philippe Verbeke; Martine Perichon; Bertrand Friguet; Hilaire Bakala

Nitric oxide (NO) is important in the regulation of renal tubular function. We have investigated whether glycated proteins could impair the NO production by examining the effects of Amadori products (AP-BSA) and advanced glycation end products (AGE-BSA) on primary cultures of rabbit proximal tubular epithelial (PTE) cells. Nitric oxide synthase activity was assessed by measurement of the conversion of L-arginine to L-citrulline and by production of NO, after short-term (30 min) or long-term (1 or 3 days) incubation. Short incubations of PTE cells with either 200 microg/ml AP-BSA or 40 microg/ml AGE-BSA significantly decreased NO production. AP-BSA (3000 microg/ml) inhibited the Ca(2+)-dependent NOS activity even though above 50 microg/ml it increased Ca(2+)-independent NOS activity. In contrast, 40 microg/ml AGE-BSA inhibited both isoforms of NOS. Longer incubations with 200 microg/ml AP-BSA or 250 microg/ml AGE-BSA decreased NO release and inhibited Ca(2+)-dependent and -independent NOS activities. APs did not affect NO release by S-nitroso-N-acetyl-penicillamine (SNAP), while 250 microg/ml AGEs decreased it. After 3 days incubation, glycation products had no effect on the NOS cell content. Cell viability and proliferation were not modified under these experimental conditions, suggesting that the fall in NO production was not due to there being fewer cells. These data indicate that APs and AGEs directly inhibit NOS activity, and additionally that AGEs quench released NO. Thus, both types of glycated proteins alter the production of NO by PTE cells and could participate in the renal tubule dysfunction associated with aging and diabetes.


Journal of Histochemistry and Cytochemistry | 1997

Accumulation of Advanced Glycation Endproducts in the Rat Nephron: Link with Circulating AGEs During Aging

Philippe Verbeke; Martine Perichon; Caroline Borot–Laloi; Jean Schaeverbeke; Hilaire Bakala

The accumulation of advanced glycosylation end products (AGEs) is believed to be a factor in the development of aging nephropathy. We have attempted to establish a link between the formation of AGEs and the onset of renal impairment with aging, indicated by albuminuria, using a fluorescence assay and immunohistochemical detection of AGEs in the renal extracellular matrix in rats. The fluorescence of collagenase-digested Type IV collagen from GBM increased with age, from 1.65 ± 0.05 AU/mM OHPro (3 months) and 1.58 ± 0.04 (10 months) to 2.16 ± 0.06 (26 months) (p>0.001) and 2.53 ± 0.18 (30 months) (p>0.001). In contrast, the extent of early glycation products significantly decreased from 5.35 ± 0.25 nmol HCHO/nmol OHPro at 3 months to 3.14 ± 0.19 at 10 months (p>0.001), 3.42 ± 0.38 at 26 months, and 0.74 ± 0.08 at 30 months (p>0.001). The urinary fluorescence of circulating AGE rose from 2.42 ± 0.15 AU/mg protein (3 months), 1.69 ± 0.07 (10 months), to 4.63 ± 0.35 (26 months) (p>0.01) and 4.73 ± 0.72 (30 months), while the serum fluorescence increased from 0.39 ± 0.02 AU/mg protein at 3 months and 0.43 ± 0.02 at 10 months to 0.59 ± 0.04 at 26 months (p>0.001) and 0.54 ± 0.03 at 30 months (p>0.04). Polyclonal antibodies raised against AGE RNase showed faint areas of AGE immunoreactivity in mesangial areas in the nephrons of young rats. The immunolabeling of Bowmans capsule, the mesangial matrices, and the peripheral loops of glomerular and tubule basement membranes increased with rat age. The increase in circulating AGE peptides parallels the accumulation of AGEs in the nephron, and this parallels the pattern of extracellular matrix deposition, suggesting a close link between AGE accumulation and renal impairment in aging rats. (J Histochem Cytochem 45:1059–1068, 1997)


Molecular Oral Microbiology | 2010

Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells.

Luyu Yao; C. Jermanus; B. Barbetta; Chul Hee Choi; Philippe Verbeke; David M. Ojcius; Özlem Yilmaz

Porphyromonas gingivalis, a self-limiting oral pathogen, can colonize and replicate in gingival epithelial cells (GECs). P. gingivalis-infected GECs are protected from mitochondrion-dependent apoptosis, partially through activation of phosphatidyl inositol 3-kinase/Akt signaling. Biochemical events associated with P. gingivalis-induced inhibition of apoptosis include the blocking of mitochondrial membrane permeability and cytochrome-c release. We studied functional importance of Akt and the status of associated key mitochondrial molecules, pro-apoptotic Bad and caspase-9, during infection of GECs. We found that P. gingivalis infection caused significant phosphorylation of Bad progressively, while messenger RNA levels for Bad slowly decreased. Fluorescence microscopy showed translocation of the mitochondrial Bad to the cytosol post-infection. Conversely, P. gingivalis lost the ability to promote phosphorylation and translocation of Bad in Akt-deficient GECs. Caspase-9 activation induced by a chemical inducer of apoptosis was significantly inhibited by infection over time. However, Akt depletion by small interfering RNA did not reverse inhibition of caspase-9 activation by infection. Hence, P. gingivalis inactivates pro-apoptotic Bad through Akt. The inhibition of caspase-9 activation appears to be independent of Akt. Overall, our findings suggest that Akt is a key component of anti-apoptotic pathways stimulated by P. gingivalis. The P. gingivalis uses other mitochondrial pathways to protect host cells from cell-death and to ensure its survival in gingival epithelium.


Mechanisms of Ageing and Development | 1995

Glycation of albumin with aging and diabetes in rats: changes in its renal handling

Hilaire Bakala; Philippe Verbeke; Martine Perichon; B. Corman; Jean Schaeverbeke

Albumin glycation was investigated in old rats to elucidate the link between the preferential excretion of glycated albumin and age-related microalbuminuria. Postprandial blood glucose and the glycated albumin in the serum and urine of 3-, 10- and 30-month-old Wistar rats and in streptozotocin diabetic rats were determined. Blood glucose increased from 1.46 +/- 0.046 g l-1 in 3-month-old rats to 2.08 +/- 0.06 (10 months) and 1.75 +/- 0.23 (30 months) (P < 0.05). Albumin glycation level in the serum increased from 0.79 +/- 0.07 nmol HCHO/nmol albumin (3 months) to 1.41 +/- 0.14 (10 months) and 1.73 +/- 0.21 (30 months) (P < 0.05); urinary level increased from 1.63 +/- 0.39 nmol HCHO/nmol albumin (3 months) to 2.92 +/- 0.57 (10 months) and 2.39 +/- 0.36 (30 months) (P < 0.01). The percent glycated albumin in serum rose from 3.33 +/- 0.64 to 6.81 +/- 0.63 and 6.99 +/- 1.79% of total albumin (P < 0.05), whereas the urine percentage decreased from 12.81 +/- 3.97 to 12.64 +/- 2.87 and 2.63 +/- 0.97% (P < 0.05) in 3-, 10- and 30-month-old rats, respectively. Editing decreased with aging from 4.28 +/- 0.83 (3 months) to 1.84 +/- 0.32 (10 months) and 0.52 +/- 0.14 (30 months) (P < 0.01). Editing in microproteinuric diabetic rats was lower (0.95 +/- 0.08) than in 3-month-old control rats (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


PLOS ONE | 2013

Penicillin Kills Chlamydia following the Fusion of Bacteria with Lysosomes and Prevents Genital Inflammatory Lesions in C. muridarum-Infected Mice

Maud Dumoux; Sylvain M. Le Gall; Mohamed Habbeddine; Christiane Delarbre; Richard D. Hayward; Colette Kanellopoulos-Langevin; Philippe Verbeke

The obligate intracellular bacterium Chlamydia exists as two distinct forms. Elementary bodies (EBs) are infectious and extra-cellular, whereas reticulate bodies (RBs) replicate within a specialized intracellular compartment termed an ‘inclusion’. Alternative persistent intra-cellular forms can be induced in culture by diverse stimuli such as IFNγ or adenosine/EHNA. They do not grow or divide but revive upon withdrawal of the stimulus and are implicated in several widespread human diseases through ill-defined in vivo mechanisms. β-lactam antibiotics have also been claimed to induce persistence in vitro. The present report shows that upon penicillin G (pG) treatment, inclusions grow as fast as those in infected control cells. After removal of pG, Chlamydia do not revert to RBs. These effects are independent of host cell type, serovar, biovar and species of Chlamydia. Time-course experiments demonstrated that only RBs were susceptible to pG. pG-treated bacteria lost their control over host cell apoptotic pathways and no longer expressed pre-16S rRNA, in contrast to persistent bacteria induced with adenosine/EHNA. Confocal and live-video microscopy showed that bacteria within the inclusion fused with lysosomal compartments in pG-treated cells. That leads to recruitment of cathepsin D as early as 3 h post pG treatment, an event preceding bacterial death by several hours. These data demonstrate that pG treatment of cultured cells infected with Chlamydia results in the degradation of the bacteria. In addition we show that pG is significantly more efficient than doxycycline at preventing genital inflammatory lesions in C. muridarum-C57Bl/6 infected mice. These in vivo results support the physiological relevance of our findings and their potential therapeutic applications.


Biochimica et Biophysica Acta | 1996

Effect of glycation of albumin on its binding to renal brush-border membrane vesicles: influence of aging in rats.

Philippe Verbeke; Martine Perichon; Jean Schaeverbeke; Hilaire Bakala

Aging is associated with the loss of preferential urinary excretion of Amadori-product glycated albumin. We have measured the binding of 125I-labeled glycated albumin to the renal brush-border membrane vesicles from young and old rats to determine whether a specific receptor-mediated endocytosis system may be involved. 125I-Glycated albumin was specifically bound by renal brush-border membrane vesicles in a time- and temperature-dependent manner; the binding was concentration-dependent, saturable and reversible. Scatchard plots gave an apparent dissociation constant Km of 488 +/- 17 nM, and a number of binding sites N of 33.5 +/- 3.4 pmol/mg protein/min in membrane vesicles from young (3 months old) rats; the binding of native [125I]albumin, gave a Km of 1194 +/- 200 nM (P < 2%) and N of 82.4 +/- 16.3 pmol/mg protein/min (P < 3%). Vesicles from 10-month-old rats had a similar Km (619.6 +/- 135.3 nM) and N (21.91 +/- 2.98 pmol/mg protein/min), while those from older (30 months old) rats had significantly increased Km (1344 +/- 237 nM, P < 3%) and N (81.3 +/- 10.9 pmol/mg protein/min, P < 1%) for 125I-glycated albumin binding. 125I-Glycated HSA was not displaced by unlabeled native HSA in less than 100-fold excess and native [125I]HSA was only displaced by a 10-fold excess of unlabeled glycated HSA. The binding of native [125I]HSA was partly inhibited (85%) by unlabeled glycated HSA. Thus, there appear to be two different binding sites, one for glycated and the other for native albumin, lying close together; and the glycation site on albumin is the discriminatory recognition factor.

Collaboration


Dive into the Philippe Verbeke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colette Kanellopoulos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David M. Ojcius

University of the Pacific (United States)

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maud Dumoux

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toni Darville

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge