Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippos Mordohai is active.

Publication


Featured researches published by Philippos Mordohai.


International Journal of Computer Vision | 2008

Detailed Real-Time Urban 3D Reconstruction from Video

Marc Pollefeys; David Nistér; Jan Michael Frahm; Amir Akbarzadeh; Philippos Mordohai; Brian Clipp; Chris Engels; David Gallup; Seon Joo Kim; Paul Merrell; C. Salmi; Sudipta N. Sinha; B. Talton; Liang Wang; Qingxiong Yang; Henrik Stewenius; Ruigang Yang; Greg Welch; Herman Towles

Abstract The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It employs commodity graphics hardware and standard CPU’s to achieve real-time performance. We present the main considerations in designing the system and the steps of the processing pipeline. Our system extends existing algorithms to meet the robustness and variability necessary to operate out of the lab. To account for the large dynamic range of outdoor videos the processing pipeline estimates global camera gain changes in the feature tracking stage and efficiently compensates for these in stereo estimation without impacting the real-time performance. The required accuracy for many applications is achieved with a two-step stereo reconstruction process exploiting the redundancy across frames. We show results on real video sequences comprising hundreds of thousands of frames.


international conference on computer vision | 2007

Real-Time Visibility-Based Fusion of Depth Maps

Paul Merrell; Amir Akbarzadeh; Liang Wang; Philippos Mordohai; Jan Michael Frahm; Ruigang Yang; David Nistér; Marc Pollefeys

We present a viewpoint-based approach for the quick fusion of multiple stereo depth maps. Our method selects depth estimates for each pixel that minimize violations of visibility constraints and thus remove errors and inconsistencies from the depth maps to produce a consistent surface. We advocate a two-stage process in which the first stage generates potentially noisy, overlapping depth maps from a set of calibrated images and the second stage fuses these depth maps to obtain an integrated surface with higher accuracy, suppressed noise, and reduced redundancy. We show that by dividing the processing into two stages we are able to achieve a very high throughput because we are able to use a computationally cheap stereo algorithm and because this architecture is amenable to hardware-accelerated (GPU) implementations. A rigorous formulation based on the notion of stability of a depth estimate is presented first. It aims to determine the validity of a depth estimate by rendering multiple depth maps into the reference view as well as rendering the reference depth map into the other views in order to detect occlusions and free- space violations. We also present an approximate alternative formulation that selects and validates only one hypothesis based on confidence. Both formulations enable us to perform video-based reconstruction at up to 25 frames per second. We show results on the multi-view stereo evaluation benchmark datasets and several outdoors video sequences. Extensive quantitative analysis is performed using an accurately surveyed model of a real building as ground truth.


computer vision and pattern recognition | 2007

Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions

David Gallup; Jan Michael Frahm; Philippos Mordohai; Qingxiong Yang; Marc Pollefeys

Recent research has focused on systems for obtaining automatic 3D reconstructions of urban environments from video acquired at street level. These systems record enormous amounts of video; therefore a key component is a stereo matcher which can process this data at speeds comparable to the recording frame rate. Furthermore, urban environments are unique in that they exhibit mostly planar surfaces. These surfaces, which are often imaged at oblique angles, pose a challenge for many window-based stereo matchers which suffer in the presence of slanted surfaces. We present a multi-view plane-sweep-based stereo algorithm which correctly handles slanted surfaces and runs in real-time using the graphics processing unit (GPU). Our algorithm consists of (1) identifying the scenes principle plane orientations, (2) estimating depth by performing a plane-sweep for each direction, (3) combining the results of each sweep. The latter can optionally be performed using graph cuts. Additionally, by incorporating priors on the locations of planes in the scene, we can increase the quality of the reconstruction and reduce computation time, especially for uniform textureless surfaces. We demonstrate our algorithm on a variety of scenes and show the improved accuracy obtained by accounting for slanted surfaces.


international symposium on 3d data processing visualization and transmission | 2006

Towards Urban 3D Reconstruction from Video

Amir Akbarzadeh; Jan Michael Frahm; Philippos Mordohai; Brian Clipp; Chris Engels; David Gallup; Paul Merrell; M. Phelps; Sudipta N. Sinha; B. Talton; Liang Wang; Qingxiong Yang; Henrik Stewenius; Ruigang Yang; Greg Welch; Herman Towles; David Nistér; Marc Pollefeys

The paper introduces a data collection system and a processing pipeline for automatic geo-registered 3D reconstruction of urban scenes from video. The system collects multiple video streams, as well as GPS and INS measurements in order to place the reconstructed models in geo- registered coordinates. Besides high quality in terms of both geometry and appearance, we aim at real-time performance. Even though our processing pipeline is currently far from being real-time, we select techniques and we design processing modules that can achieve fast performance on multiple CPUs and GPUs aiming at real-time performance in the near future. We present the main considerations in designing the system and the steps of the processing pipeline. We show results on real video sequences captured by our system.


computer vision and pattern recognition | 2008

Variable baseline/resolution stereo

David Gallup; Jan Michael Frahm; Philippos Mordohai; Marc Pollefeys

We present a novel multi-baseline, multi-resolution stereo method, which varies the baseline and resolution proportionally to depth to obtain a reconstruction in which the depth error is constant. This is in contrast to traditional stereo, in which the error grows quadratically with depth, which means that the accuracy in the near range far exceeds that of the far range. This accuracy in the near range is unnecessarily high and comes at significant computational cost. It is, however, non-trivial to reduce this without also reducing the accuracy in the far range. Many datasets, such as video captured from a moving camera, allow the baseline to be selected with significant flexibility. By selecting an appropriate baseline and resolution (realized using an image pyramid), our algorithm computes a depthmap which has these properties: 1) the depth accuracy is constant over the reconstructed volume, 2) the computational effort is spread evenly over the volume, 3) the angle of triangulation is held constant w.r.t. depth. Our approach achieves a given target accuracy with minimal computational effort, and is orders of magnitude faster than traditional stereo.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

A Quantitative Evaluation of Confidence Measures for Stereo Vision

Xiaoyan Hu; Philippos Mordohai

We present an extensive evaluation of 17 confidence measures for stereo matching that compares the most widely used measures as well as several novel techniques proposed here. We begin by categorizing these methods according to which aspects of stereo cost estimation they take into account and then assess their strengths and weaknesses. The evaluation is conducted using a winner-take-all framework on binocular and multibaseline datasets with ground truth. It measures the capability of each confidence method to rank depth estimates according to their likelihood for being correct, to detect occluded pixels, and to generate low-error depth maps by selecting among multiple hypotheses for each pixel. Our work was motivated by the observation that such an evaluation is missing from the rapidly maturing stereo literature and that our findings would be helpful to researchers in binocular and multiview stereo.


international conference on computer vision | 2007

Multi-View Stereo via Graph Cuts on the Dual of an Adaptive Tetrahedral Mesh

Sudipta N. Sinha; Philippos Mordohai; Marc Pollefeys

We formulate multi-view 3D shape reconstruction as the computation of a minimum cut on the dual graph of a semi- regular, multi-resolution, tetrahedral mesh. Our method does not assume that the surface lies within a finite band around the visual hull or any other base surface. Instead, it uses photo-consistency to guide the adaptive subdivision of a coarse mesh of the bounding volume. This generates a multi-resolution volumetric mesh that is densely tesselated in the parts likely to contain the unknown surface. The graph-cut on the dual graph of this tetrahedral mesh produces a minimum cut corresponding to a triangulated surface that minimizes a global surface cost functional. Our method makes no assumptions about topology and can recover deep concavities when enough cameras observe them. Our formulation also allows silhouette constraints to be enforced during the graph-cut step to counter its inherent bias for producing minimal surfaces. Local shape refinement via surface deformation is used to recover details in the reconstructed surface. Reconstructions of the Multi- View Stereo Evaluation benchmark datasets and other real datasets show the effectiveness of our method.


international conference on computer vision | 2007

Temporally Consistent Reconstruction from Multiple Video Streams Using Enhanced Belief Propagation

E.S. Larsen; Philippos Mordohai; Marc Pollefeys; Henry Fuchs

We present an approach for 3D reconstruction from multiple video streams taken by static, synchronized and calibrated cameras that is capable of enforcing temporal consistency on the reconstruction of successive frames. Our goal is to improve the quality of the reconstruction by finding corresponding pixels in subsequent frames of the same camera using optical flow, and also to at least maintain the quality of the single time-frame reconstruction when these correspondences are wrong or cannot be found. This allows us to process scenes with fast motion, occlusions and self- occlusions where optical flow fails for large numbers of pixels. To this end, we modify the belief propagation algorithm to operate on a 3D graph that includes both spatial and temporal neighbors and to be able to discard messages from outlying neighbors. We also propose methods for introducing a bias and for suppressing noise typically observed in uniform regions. The bias encapsulates information about the background and aids in achieving a temporally consistent reconstruction and in the mitigation of occlusion related errors. We present results on publicly available real video sequences. We also present quantitative comparisons with results obtained by other researchers.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2004

First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D

Wai-Shun Tong; Chi-Keung Tang; Philippos Mordohai; Gérard G. Medioni

Most computer vision applications require the reliable detection of boundaries. In the presence of outliers, missing data, orientation discontinuities, and occlusion, this problem is particularly challenging. We propose to address it by complementing the tensor voting framework, which was limited to second order properties, with first order representation and voting. First order voting fields and a mechanism to vote for 3D surface and volume boundaries and curve endpoints in 3D are defined. Boundary inference is also useful for a second difficult problem in grouping, namely, automatic scale selection. We propose an algorithm that automatically infers the smallest scale that can preserve the finest details. Our algorithm then proceeds with progressively larger scale to ensure continuity where it has not been achieved. Therefore, the proposed approach does not oversmooth features or delay the handling of boundaries and discontinuities until model misfit occurs. The interaction of smooth features, boundaries, and outliers is accommodated by the unified representation, making possible the perceptual organization of data in curves, surfaces, volumes, and their boundaries simultaneously. We present results on a variety of data sets to show the efficacy of the improved formalism.


computer vision and pattern recognition | 2010

Detecting and parsing architecture at city scale from range data

Alexander Toshev; Philippos Mordohai; Ben Taskar

We present a method for detecting and parsing buildings from unorganized 3D point clouds into a compact, hierarchical representation that is useful for high-level tasks. The input is a set of range measurements that cover large-scale urban environment. The desired output is a set of parse trees, such that each tree represents a semantic decomposition of a building – the nodes are roof surfaces as well as volumetric parts inferred from the observable surfaces. We model the above problem using a simple and generic grammar and use an efficient dependency parsing algorithm to generate the desired semantic description. We show how to learn the parameters of this simple grammar in order to produce correct parses of complex structures. We are able to apply our model on large point clouds and parse an entire city.

Collaboration


Dive into the Philippos Mordohai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard G. Medioni

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jan Michael Frahm

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Gallup

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Merrell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Hu

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aristotle Spyropoulos

Stevens Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge