Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip A. Yates is active.

Publication


Featured researches published by Phillip A. Yates.


Journal of Biological Chemistry | 1999

Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation.

Phillip A. Yates; Robert W. Burman; Padmaja Mummaneni; Sandra Krussel; Mitchell S. Turker

A cis-acting methylation center that signalsde novo DNA methylation is located upstream of the mouseAprt gene. In the current study, two approaches were taken to determine if tandem B1 repetitive elements found at the 3′ end of the methylation center contribute to the methylation signal. First, bisulfite genomic sequencing demonstrated that CpG sites within the B1 elements were methylated at relative levels of 43% in embryonal stem cells deficient for the maintenance DNA methyltransferase when compared with wild type embryonal stem cells. Second, the ability of the B1 elements to signal de novo methylation upon stable transfection into mouse embryonal carcinoma cells was examined. This approach demonstrated that the B1 elements were methylated de novo to a high level in the embryonal carcinoma cells and that the B1 elements acted synergistically. The results from these experiments provide strong evidence that the tandem B1 repetitive elements provide a significant fraction of the methylation center signal. By extension, they also support the hypothesis that one role for DNA methylation in mammals is to protect the genome from expression and transposition of parasitic elements.


Advances in Experimental Medicine and Biology | 2008

Purine and Pyrimidine Metabolism in Leishmania

Nicola S. Carter; Phillip A. Yates; Cassandra S. Arendt; Jan M. Boitz; Buddy Ullman

Purines and pyrimidines are indispensable to all life, performing many vital functions for cells: ATP serves as the universal currency of cellular energy, cAMP and cGMP are key second messenger molecules, purine and pyrimidine nucleotides are precursors for activated forms of both carbohydrates and lipids, nucleotide derivatives of vitamins are essential cofactors in metabolic processes, and nucleoside triphosphates are the immediate precursors for DNA and RNA synthesis. Unlike their mammalian and insect hosts, Leishmania lack the metabolic machinery to make purine nucleotides de novo and must rely on their host for preformed purines. The obligatory nature of purine salvage offers, therefore, a plethora of potential targets for drug targeting, and the pathway has consequently been the focus of considerable scientific investigation. In contrast, Leishmania are prototrophic for pyrimidines and also express a small complement of pyrimidine salvage enzymes. Because the pyrimidine nucleotide biosynthetic pathways of Leishmania and humans are similar, pyrimidine metabolism in Leishmania has generally been considered less amenable to therapeutic manipulation than the purine salvage pathway. However, evidence garnered from a variety of parasitic protozoa suggests that the selective inhibition of pyrimidine biosynthetic enzymes offers a rational therapeutic paradigm. In this chapter, we present an overview of the purine and pyrimidine pathways in Leishmania, make comparisons to the equivalent pathways in their mammalian host, and explore how these pathways might be amenable to selective therapeutic targeting.


Infection and Immunity | 2009

Leishmania donovani Ornithine Decarboxylase Is Indispensable for Parasite Survival in the Mammalian Host

Jan M. Boitz; Phillip A. Yates; Chelsey Kline; Upasna Gaur; Mary E. Wilson; Buddy Ullman; Sigrid C. Roberts

ABSTRACT Mutations within the polyamine biosynthetic pathway of Leishmania donovani, the etiological agent of visceral leishmaniasis, confer polyamine auxotrophy to the insect vector or promastigote form of the parasite. However, whether the infectious or amastigote form of the parasite requires an intact polyamine pathway has remained an open question. To address this issue, conditionally lethal Δodc mutants lacking ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, were created by double targeted gene replacement within a virulent strain of L. donovani. ODC-deficient promastigotes and axenic amastigotes were auxotrophic for polyamines and capable of robust growth only when exogenous putrescine was supplied in the culture medium, confirming that polyamine biosynthesis is an essential nutritional pathway for L. donovani promastigotes. To assess whether the Δodc lesion also affected the ability of amastigotes to sustain a robust infection, macrophage and mouse infectivity experiments were performed. Parasite loads in murine macrophages infected with each of two independent Δodc knockout lines were decreased ∼80% compared to their wild-type counterpart. Furthermore, α-difluoromethylornithine, a suicide inhibitor of ODC, inhibited growth of wild-type L. donovani amastigotes and effectively cured macrophages of parasites, thereby preventing host cell destruction. Strikingly, however, parasitemias of both Δodc null mutants were reduced by 6 and 3 orders of magnitude, respectively, in livers and spleens of BALB/c mice. The compromised infectivity phenotypes of the Δodc knockouts in both macrophages and mice were rescued by episomal complementation of the genetic lesion. These genetic and pharmacological studies strongly implicate ODC as an essential cellular determinant that is necessary for the viability and growth of both L. donovani promastigotes and amastigotes and intimate that pharmacological inhibition of ODC is a promising therapeutic paradigm for the treatment of visceral and perhaps other forms of leishmaniasis.


Molecular Microbiology | 2010

Adaptive responses to purine starvation in Leishmania donovani

Nicola S. Carter; Phillip A. Yates; Sarah K. Gessford; Sean R. Galagan; Scott M. Landfear; Buddy Ullman

Starvation of Leishmania donovani parasites for purines leads to a rapid amplification in purine nucleobase and nucleoside transport. Studies with nucleoside transport‐deficient L. donovani indicate that this phenomenon is mediated by the nucleoside transporters LdNT1 and LdNT2, as well as by the purine nucleobase transporter LdNT3. The escalation in nucleoside transport cannot be ascribed to an increase in either LdNT1 or LdNT2 mRNA. However, Western analyses on parasites expressing epitope‐tagged LdNT2 revealed a marked upregulation in transporter protein at the cell surface. Kinetic investigations of LdNT1 and LdNT2 activities from purine‐replete and purine‐starved cells indicated that both transporters exhibited significant increases in Vmax for their ligands under conditions of purine‐depletion, although neither transporter displayed an altered affinity for its respective ligands. Concomitant with the increase in purine nucleoside and nucleobase transport, the purine salvage enzymes HGPRT, XPRT and APRT were also upregulated, suggesting that under conditions where purines are limiting, Leishmania parasites remodel their purine metabolic pathway to maximize salvage. Moreover, qRT‐PCR analyses coupled with cycloheximide inhibition studies suggest that the underlying molecular mechanism for this augmentation in purine salvage occurs post‐transcriptionally and is reliant on de novo protein synthesis.


Journal of Biological Chemistry | 2011

The Leishmania donovani UMP Synthase Is Essential for Promastigote Viability and Has an Unusual Tetrameric Structure That Exhibits Substrate-controlled Oligomerization

Jarrod B. French; Phillip A. Yates; D. Radika Soysa; Jan M. Boitz; Nicola S. Carter; Bailey Chang; Buddy Ullman; Steven E. Ealick

The final two steps of de novo uridine 5′-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5′-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.


PLOS Pathogens | 2014

Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani

Jessica L. Martin; Phillip A. Yates; Radika Soysa; Joshua F. Alfaro; Feng Yang; Kristin E. Burnum-Johnson; Vladislav A. Petyuk; Karl K. Weitz; David G. Camp; Richard D. Smith; Phillip A. Wilmarth; Larry L. David; Gowthaman Ramasamy; Peter J. Myler; Nicola S. Carter

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


American Journal of Human Genetics | 1999

Hypomethylation of an Expanded FMR1 Allele Is Not Associated with a Global DNA Methylation Defect

Robert W. Burman; Phillip A. Yates; Lindsay D. Green; Peter B. Jacky; Mitchell S. Turker; Bradley W. Popovich

The vast majority of fragile-X full mutations are heavily methylated throughout the expanded CGG repeat and the surrounding CpG island. Hypermethylation initiates and/or stabilizes transcriptional inactivation of the FMR1 gene, which causes the fragile X-syndrome phenotype characterized, primarily, by mental retardation. The relation between repeat expansion and hypermethylation is not well understood nor is it absolute, as demonstrated by the identification of nonretarded males who carry hypomethylated full mutations. To better characterize the methylation pattern in a patient who carries a hypomethylated full mutation of approximately 60-700 repeats, we have evaluated methylation with the McrBC endonuclease, which allows analysis of numerous sites in the FMR1 CpG island, including those located within the CGG repeat. We report that the expanded-repeat region is completely free of methylation in this full-mutation male. Significantly, this lack of methylation appears to be specific to the expanded FMR1 CGG-repeat region, because various linked and unlinked repetitive-element loci are methylated normally. This finding demonstrates that the lack of methylation in the expanded CGG-repeat region is not associated with a global defect in methylation of highly repeated DNA sequences. We also report that de novo methylation of the expanded CGG-repeat region does not occur when it is moved via microcell-mediated chromosome transfer into a de novo methylation-competent mouse embryonal carcinoma cell line.


Molecular and Cellular Biology | 2003

Silencing of Mouse Aprt Is a Gradual Process in Differentiated Cells

Phillip A. Yates; Robert W. Burman; James Simpson; Olga N. Ponomoreva; Mathew J. Thayer; Mitchell S. Turker

ABSTRACT Mouse Aprt constructs that are highly susceptible to DNA methylation-associated inactivation in embryonal carcinoma cells were transfected into differentiated cells, where they were expressed. Construct silencing was induced by either whole-cell fusion of the expressing differentiated cells with embryonal carcinoma cells or by treatment of the differentiated cells with the DNA demethylating agent 5-aza-2′-deoxycytidine. Induction of silencing was enhanced significantly by the presence of a methylation center fragment positioned upstream of a truncated promoter comprised of two functional Sp1 binding sites. Initial silencing of the Aprt constructs was unstable, as evidenced by high spontaneous reversion frequencies (≈10−2). Stably silenced subclones with spontaneous reversion frequencies of <10−5 were isolated readily from the unstably silenced clones. These reversion frequencies were enhanced significantly by treatment of the cells with 5-aza-2′-deoxycytidine. A bisulfite sequence analysis demonstrated that CpG methylation initiated within the methylation center region on expressing alleles and that the induction of silencing allowed methylation to spread towards and eventually into the promoter region. Combined with the induction of revertants by 5-aza-2′-deoxycytidine, this result suggested that stabilization of silencing was due to an increased density of CpG methylation. All allelic methylation patterns were variegated, which is consistent with a gradual and evolving process. In total, our results demonstrate that silencing of mouse Aprt is a gradual process in the differentiated cells.


Infection and Immunity | 2017

Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes

Jan M. Boitz; Caslin Gilroy; Tamara Olenyik; Dustin Paradis; Jasmine Perdeh; Kristie Dearman; Madison J. Davis; Phillip A. Yates; Yuexin Li; Michael K. Riscoe; Buddy Ullman; Sigrid C. Roberts

ABSTRACT Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.


Journal of Biological Chemistry | 2013

Adenylosuccinate synthetase and adenylosuccinate lyase deficiencies trigger growth and infectivity deficits in Leishmania donovani.

Jan M. Boitz; Rona Strasser; Phillip A. Yates; Armando Jardim; Buddy Ullman

Background: Purine salvage in Leishmania is an essential nutritional function. Results: Null mutants deficient in either adenylosuccinate synthetase or adenylosuccinate lyase impact growth and infectivity phenotypes of Leishmania donovani. Conclusion: Adenylosuccinate synthetase and adenylosuccinate lyase are central enzymes in purine salvage by L. donovani. Significance: Adenylosuccinate lyase has been validated as a potential drug target in L. donovani. Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L. donovani, Δadss and Δasl parasites in culture exhibited a profoundly restricted growth phenotype in which the only permissive growth conditions were a 6-aminopurine source in the presence of 2′-deoxycoformycin, an inhibitor of adenine aminohydrolase activity. Although both knock-outs showed a diminished capacity to infect murine peritoneal macrophages, only the Δasl null mutant was profoundly incapacitated in its ability to infect mice. The enormous discrepancy in parasite loads observed in livers and spleens from mice infected with either Δadss or Δasl parasites can be explained by selective accumulation of adenylosuccinate in the Δasl knock-out and consequent starvation for guanylate nucleotides. Genetic complementation of a Δasl lesion in Escherichia coli implied that the L. donovani ASL could also recognize 5-aminoimidazole-(N-succinylocarboxamide) ribotide as a substrate, and purified recombinant ASL displayed an apparent Km of ∼24 μm for adenylosuccinate. Unlike many components of the purine salvage pathway of L. donovani, both ASL and ADSS are cytosolic enzymes. Overall, these data underscore the paramount importance of ASL to purine salvage by both life cycle stages of L. donovani and authenticate ASL as a potential drug target in Leishmania.

Collaboration


Dive into the Phillip A. Yates's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge