Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip B. Gates is active.

Publication


Featured researches published by Phillip B. Gates.


Developmental Cell | 2002

The Newt Ortholog of CD59 Is Implicated in Proximodistal Identity during Amphibian Limb Regeneration

Sara Morais da Silva; Phillip B. Gates; Jeremy P. Brockes

The proximodistal identity of a newt limb regeneration blastema is respecified by exposure to retinoic acid, but its molecular basis is unclear. We identified from a differential screen the cDNA for Prod 1, a gene whose expression in normal and regenerating limbs is regulated by proximodistal location and retinoic acid: Prod 1 is the newt ortholog of CD59. Prod 1/CD59 was found to be located at the cell surface with a GPI anchor which is cleaved by PIPLC. A proximal newt limb blastema engulfs a distal blastema after juxtaposition in culture, and engulfment is specifically blocked by PIPLC, and by affinity-purified antibodies to two distinct Prod 1/CD59 peptides. Prod 1 is therefore a cell surface protein implicated in the local cell-cell interactions mediating positional identity.


PLOS ONE | 2009

Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

Acely Garza-Garcia; Richard Harris; Diego Esposito; Phillip B. Gates; Paul C. Driscoll

Background Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD) axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules. Methodology/Principal Findings With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum. Conclusions/Significance The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene.


Mechanisms of Development | 1993

Delta retinoic acid receptor isoform δ1 is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema

Clifton W. Ragsdale; Phillip B. Gates; David S. Hill; Jeremy P. Brockes

In amphibian limb regeneration memory for position in the proximal-distal axis can be respecified by retinoic acid. The favoured candidates to mediate this effect are the retinoic acid receptors (RARs) and of the RARs identified in the regeneration blastema, the delta receptor is the most abundant. The presence in blastemal mesenchyme of at least two delta receptor isoforms, delta 1 and delta 2, alternatively spliced at the A-B junction, was demonstrated in expression studies and by PCR cloning. The delta 1 receptor is abundant in regenerative structures such as the limb and tail, whereas the delta 2 and alpha receptors show a more uniform pattern of expression across adult newt tissues. Full-length cloning of the delta 1 receptor established the presence of an unusually long open reading frame and N-terminal sequence that appears unique among vertebrate retinoic acid receptors. Transient transfection of expression constructs into COS cells followed by Western blotting confirmed the existence of at least three potential initiation sites for delta 1 translation. The possibility that delta 1 RAR expression may specify positional memory directly was tested in RNase protection experiments. delta 1 receptor message is increased on amputation, but does not exhibit a pronounced differential distribution along the proximal-distal axis in normal and regenerating limbs, nor does it show a persistent alteration in expression levels following a dose of retinoic acid sufficient to respecify position. The possibility that the morphogenetic effects of RA may be mediated through receptor interactions is raised by the finding that single mesenchymal blastemal cells in culture can express multiple RAR subtypes (delta 1 and alpha) and isoforms (delta 1 and delta 2).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Regulation of p53 is critical for vertebrate limb regeneration

Maximina H. Yun; Phillip B. Gates; Jeremy P. Brockes

Significance Our work establishes that endogenous regulation of the activity of the tumor-suppressor p53 is a critical component in vertebrate limb regeneration and is required for the process to occur. We show that down-regulation of p53 is required for cell cycle reentry of postmitotic differentiated cells, the critical step in the formation of the progenitors for the process of regeneration. We propose that the absence of tumor-suppressors that stabilize p53 and the presence of dominant-negative isoforms, permit regeneration by negative regulation of p53. This research sheds light onto previously unknown molecular mechanisms critical for limb regeneration and offers a new perspective on the functions of the tumour suppressor p53. Extensive regeneration of the vertebrate body plan is found in salamander and fish species. In these organisms, regeneration takes place through reprogramming of differentiated cells, proliferation, and subsequent redifferentiation of adult tissues. Such plasticity is rarely found in adult mammalian tissues, and this has been proposed as the basis of their inability to regenerate complex structures. Despite their importance, the mechanisms underlying the regulation of the differentiated state during regeneration remain unclear. Here, we analyzed the role of the tumor-suppressor p53 during salamander limb regeneration. The activity of p53 initially decreases and then returns to baseline. Its down-regulation is required for formation of the blastema, and its up-regulation is necessary for the redifferentiation phase. Importantly, we show that a decrease in the level of p53 activity is critical for cell cycle reentry of postmitotic, differentiated cells, whereas an increase is required for muscle differentiation. In addition, we have uncovered a potential mechanism for the regulation of p53 during limb regeneration, based on its competitive inhibition by ΔNp73. Our results suggest that the regulation of p53 activity is a pivotal mechanism that controls the plasticity of the differentiated state during regeneration.


Journal of Cell Science | 2011

Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration

Robert A. Blassberg; Acely Garza-Garcia; Azara Janmohamed; Phillip B. Gates; Jeremy P. Brockes

The GPI-anchor is an established determinant of molecular localisation and various functional roles have been attributed to it. The newt GPI-anchored three-finger protein (TFP) Prod1 is an important regulator of cell behaviour during limb regeneration, but it is unclear how it signals to the interior of the cell. Prod1 was expressed by transfection in cultured newt limb cells and activated transcription and expression of matrix metalloproteinase 9 (MMP9) by a pathway involving ligand-independent activation of epidermal growth factor receptor (EGFR) signalling and phosphorylation of extracellular regulated kinase 1 and 2 (ERK1/2). This was dependent on the presence of the GPI-anchor and critical residues in the α-helical region of the protein. Interestingly, Prod1 in the axolotl, a salamander species that also regenerates its limbs, was shown to activate ERK1/2 signalling and MMP9 transcription despite being anchorless, and both newt and axolotl Prod1 co-immunoprecipitated with the newt EGFR after transfection. The substitution of the axolotl helical region activated a secreted, anchorless version of the newt molecule. The activity of the newt molecule cannot therefore depend on a unique property conferred by the anchor. Prod1 is a salamander-specific TFP and its interaction with the phylogenetically conserved EGFR has implications for our view of regeneration as an evolutionary variable.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration

Anoop Kumar; Jean-Paul Delgado; Phillip B. Gates; Graham Neville; Andrew Forge; Jeremy P. Brockes

The removal of the neural tube in salamander embryos allows the development of nerve-free aneurogenic limbs. Limb regeneration is normally nerve-dependent, but the aneurogenic limb regenerates without nerves and becomes nerve-dependent after innervation. The molecular basis for these tissue interactions is unclear. Anterior Gradient (AG) protein, previously shown to rescue regeneration of denervated limbs and to act as a growth factor for cultured limb blastemal cells, is expressed throughout the larval limb epidermis and is down-regulated by innervation. In an aneurogenic limb, the level of AG protein remains high in the epidermis throughout development and regeneration, but decreases after innervation following transplantation to a normal host. Aneurogenic epidermis also shows a fivefold difference in secretory gland cells, which express AG protein. The persistently high expression of AG in the epithelial cells of an aneurogenic limb ensures that regeneration is independent of the nerve. These findings provide an explanation for this classical problem, and identify regulation of the epidermal niche by innervation as a distinctive developmental mechanism that initiates the nerve dependence of limb regeneration. The absence of this regulation during anuran limb development might suggest that it evolved in relation to limb regeneration.


Stem cell reports | 2014

Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

Maximina H. Yun; Phillip B. Gates; Jeremy P. Brockes

Summary In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.


Gene | 1998

Identification of newt connective tissue growth factor as a target of retinoid regulation in limb blastemal cells

David E Cash; Phillip B. Gates; Yutaka Imokawa; Jeremy P. Brockes

In order to analyse target genes regulated by retinoic acid in urodele limb regeneration, we have used pseudotyped retroviruses to obtain stably transfected newt limb blastemal (progenitor) cells in culture which express chimeric retinoic acid/thyroid hormone receptors delta1 or delta2. After treatment with thyroid hormone to activate the chimeric receptors, we used a polymerase chain reaction (PCR)-based subtraction method to identify target genes which are retinoid regulated. Newt connective tissue growth factor, a secreted protein recognised in several vertebrates, has been identified in this way and found to be expressed in the limb blastema and regulated by retinoic acid. This approach should permit a systematic analysis of retinoid target genes in limb regeneration.


Biochemical Society Transactions | 2014

Mechanisms underlying vertebrate limb regeneration: lessons from the salamander

Jeremy P. Brockes; Phillip B. Gates

Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach.


Developmental Dynamics | 1998

Hedgehog family member is expressed throughout regenerating and developing limbs

David Stark; Phillip B. Gates; Jeremy P. Brockes; Patrizia Ferretti

Members of the hedgehog family have been shown to play a key role in many developmental processes, including limb patterning and chondrogenesis. We have therefore investigated whether members of this family are also expressed during regeneration of the adult urodele limb and are regulated by retinoic acid (RA), since this derivative induces proximodistal duplications in regenerating limbs, and has been shown to regulate sonic hedgehog (shh) in the developing limbs of birds and mammals. We report here that a newt homologue of Xenopus banded hedgehog, called N‐bhh, is uniformly expressed by mesenchymal blastemal cells from the initial stages of regeneration and is up‐regulated by RA. In addition, we show that N‐bhh is uniformly expressed in the early limb bud of the newt embryo. Since bhh has not been detected in developing limbs of higher vertebrates, its expression in developing and regenerating newt limbs may be related to the regenerative capability of urodeles. Dev. Dyn. 1998;212:352–363.

Collaboration


Dive into the Phillip B. Gates's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anoop Kumar

University College London

View shared research outputs
Top Co-Authors

Avatar

James W. Godwin

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Maximina H. Yun

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Imokawa

University College London

View shared research outputs
Top Co-Authors

Avatar

Alexander Gann

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Clifton W. Ragsdale

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

David Stark

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge