Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip B. Hylemon is active.

Publication


Featured researches published by Phillip B. Hylemon.


Journal of Lipid Research | 2006

Bile salt biotransformations by human intestinal bacteria

Jason M. Ridlon; Dae Joong Kang; Phillip B. Hylemon

Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas bile acid 7-dehydroxylation appears restricted to a limited number of intestinal anaerobes representing a small fraction of the total colonic flora. Microbial enzymes modifying bile salts differ between species with respect to pH optima, enzyme kinetics, substrate specificity, cellular location, and possibly physiological function. Crystallization, site-directed mutagenesis, and comparisons of protein secondary structure have provided insight into the mechanisms of several bile acid-biotransforming enzymatic reactions. Molecular cloning of genes encoding bile salt-modifying enzymes has facilitated the understanding of the genetic organization of these pathways and is a means of developing probes for the detection of bile salt-modifying bacteria. The potential exists for altering the bile acid pool by targeting key enzymes in the 7α/β-dehydroxylation pathway through the development of pharmaceuticals or sequestering bile acids biologically in probiotic bacteria, which may result in their effective removal from the host after excretion.


Journal of Lipid Research | 2009

Bile acids as regulatory molecules

Phillip B. Hylemon; Huiping Zhou; William M. Pandak; Shunlin Ren; Gregorio Gil; Paul Dent

In the past, bile acids were considered to be just detergent molecules derived from cholesterol in the liver. They were known to be important for the solubilization of cholesterol in the gallbladder and for stimulating the absorption of cholesterol, fat-soluble vitamins, and lipids from the intestines. However, during the last two decades, it has been discovered that bile acids are regulatory molecules. Bile acids have been discovered to activate specific nuclear receptors (farnesoid X receptor, preganane X receptor, and vitamin D receptor), G protein coupled receptor TGR5 (TGR5), and cell signaling pathways (c-jun N-terminal kinase 1/2, AKT, and ERK 1/2) in cells in the liver and gastrointestinal tract. Activation of nuclear receptors and cell signaling pathways alter the expression of numerous genes encoding enzyme/proteins involved in the regulation of bile acid, glucose, fatty acid, lipoprotein synthesis, metabolism, transport, and energy metabolism. They also play a role in the regulation of serum triglyceride levels in humans and rodents. Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of these molecules returning from the intestines to the liver following a meal. In this review, we will summarize the current knowledge of how bile acids regulate hepatic lipid and glucose metabolism through the activation of specific nuclear receptors and cell signaling pathways.—Hylemon, P. B., H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent. Bile acids as regulatory molecules.


Journal of Hepatology | 2014

Altered profile of human gut microbiome is associated with cirrhosis and its complications

Jasmohan S. Bajaj; Douglas M. Heuman; Phillip B. Hylemon; Arun J. Sanyal; Melanie B. White; Pamela Monteith; Nicole A. Noble; Ariel Unser; Kalyani Daita; Andmorgan Fisher; Masoumeh Sikaroodi; Patrick M. Gillevet

BACKGROUND & AIMS The gut microbiome is altered in cirrhosis; however its evolution with disease progression is only partly understood. We aimed to study changes in the microbiome over cirrhosis severity, its stability over time and its longitudinal alterations with decompensation. METHODS Controls and age-matched cirrhotics (compensated/decompensated/hospitalized) were included. Their stool microbiota was quantified using multi-tagged pyrosequencing. The ratio of autochthonous to non-autochthonous taxa was calculated as the cirrhosis dysbiosis ratio (CDR); a low number indicating dysbiosis. Firstly, the microbiome was compared between controls and cirrhotic sub-groups. Secondly, for stability assessment, stool collected twice within 6months in compensated outpatients was analyzed. Thirdly, changes after decompensation were assessed using (a) longitudinal comparison in patients before/after hepatic encephalopathy development (HE), (b) longitudinal cohort of hospitalized infected cirrhotics MELD-matched to uninfected cirrhotics followed for 30days. RESULTS 244 subjects [219 cirrhotics (121 compensated outpatients, 54 decompensated outpatients, 44 inpatients) and 25 age-matched controls] were included. CDR was highest in controls (2.05) followed by compensated (0.89), decompensated (0.66), and inpatients (0.32, p<0.0001) and negatively correlated with endotoxin. Microbiota and CDR remained unchanged in stable outpatient cirrhotics (0.91 vs. 0.86, p=0.45). In patients studied before/after HE development, dysbiosis occurred post-HE (CDR: 1.2 to 0.42, p=0.03). In the longitudinal matched-cohort, microbiota were significantly different between infected/uninfected cirrhotics at baseline and a low CDR was associated with death and organ failures within 30days. CONCLUSIONS Progressive changes in the gut microbiome accompany cirrhosis and become more severe in the setting of decompensation. The cirrhosis dysbiosis ratio may be a useful quantitative index to describe microbiome alterations accompanying cirrhosis progression.


Current Opinion in Gastroenterology | 2014

Bile Acids and the Gut Microbiome

Jason M. Ridlon; Dae Joong Kang; Phillip B. Hylemon; Jasmohan S. Bajaj

Purpose of review We examine the latest research on the emerging bile acid-gut microbiome axis and its role in health and disease. Our focus revolves around two key microbial pathways for degrading bile salts, and the impact of bile acid composition in the gut on the gut microbiome and host physiology. Recent findings Bile acid pool size has recently been shown to be a function of microbial metabolism of bile acids in the intestines. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. Bile acids are emerging as regulators of the gut microbiome at the highest taxonomic levels. The role of bile acids as hormones and potentiators of liver cancer is also emerging. Summary The host and microbiome appear to regulate bile acid pool size. The host produces a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in intestine and liver. Members of the microbiome utilize bile acids and their conjugates resulting in agonism of FXR in intestine and liver resulting in a smaller, unconjugated hydrophobic bile acid pool. Hydrophilicity of the bile acid pool is associated with disease states. Reduced bile acid levels in the gut are associated with bacterial overgrowth and inflammation. Diet, antibiotic therapy, and disease states affect the balance of the microbiome-bile acid pool.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Linkage of gut microbiome with cognition in hepatic encephalopathy

Jasmohan S. Bajaj; Jason M. Ridlon; Phillip B. Hylemon; Leroy R. Thacker; Douglas M. Heuman; Sean Smith; Masoumeh Sikaroodi; Patrick M. Gillevet

Hepatic encephalopathy (HE) has been related to gut bacteria and inflammation in the setting of intestinal barrier dysfunction. We aimed to link the gut microbiome with cognition and inflammation in HE using a systems biology approach. Multitag pyrosequencing (MTPS) was performed on stool of cirrhotics and age-matched controls. Cirrhotics with/without HE underwent cognitive testing, inflammatory cytokines, and endotoxin analysis. Patients with HE were compared with those without HE using a correlation-network analysis. A select group of patients with HE (n = 7) on lactulose underwent stool MTPS before and after lactulose withdrawal over 14 days. Twenty-five patients [17 HE (all on lactulose, 6 also on rifaximin) and 8 without HE, age 56 ± 6 yr, model for end-stage liver disease score 16 ± 6] and ten controls were included. Fecal microbiota in cirrhotics were significantly different (higher Enterobacteriaceae, Alcaligeneceae, and Fusobacteriaceae and lower Ruminococcaceae and Lachnospiraceae) compared with controls. We found altered flora (higher Veillonellaceae), poor cognition, endotoxemia, and inflammation (IL-6, TNF-α, IL-2, and IL-13) in HE compared with cirrhotics without HE. In the cirrhosis group, Alcaligeneceae and Porphyromonadaceae were positively correlated with cognitive impairment. Fusobacteriaceae, Veillonellaceae, and Enterobacteriaceae were positively and Ruminococcaceae negatively related to inflammation. Network-analysis comparison showed robust correlations (all P < 1E-5) only in the HE group between the microbiome, cognition, and IL-23, IL-2, and IL-13. Lactulose withdrawal did not change the microbiome significantly beyond Fecalibacterium reduction. We concluded that cirrhosis, especially when complicated with HE, is associated with significant alterations in the stool microbiome compared with healthy individuals. Specific bacterial families (Alcaligeneceae, Porphyromonadaceae, Enterobacteriaceae) are strongly associated with cognition and inflammation in HE.


Journal of Hepatology | 2013

Modulation of the fecal bile acid profile by gut microbiota in cirrhosis.

Genta Kakiyama; William M. Pandak; Patrick M. Gillevet; Phillip B. Hylemon; Douglas M. Heuman; Kalyani Daita; Hajime Takei; Akina Muto; Hiroshi Nittono; Jason M. Ridlon; Melanie B. White; Nicole A. Noble; Pamela Monteith; Michael Fuchs; Leroy R. Thacker; Masoumeh Sikaroodi; Jasmohan S. Bajaj

BACKGROUND & AIMS The 7α-dehydroxylation of primary bile acids (BAs), chenodeoxycholic (CDCA) and cholic acid (CA) into the secondary BAs, lithocholic (LCA) and deoxycholic acid (DCA), is a key function of the gut microbiota. We aimed at studying the linkage between fecal BAs and gut microbiota in cirrhosis since this could help understand cirrhosis progression. METHODS Fecal microbiota were analyzed by culture-independent multitagged-pyrosequencing, fecal BAs using HPLC and serum BAs using LC-MS in controls, early (Child A) and advanced cirrhotics (Child B/C). A subgroup of early cirrhotics underwent BA and microbiota analysis before/after eight weeks of rifaximin. RESULTS Cross-sectional: 47 cirrhotics (24 advanced) and 14 controls were included. In feces, advanced cirrhotics had the lowest total, secondary, secondary/primary BA ratios, and the highest primary BAs compared to early cirrhotics and controls. Secondary fecal BAs were detectable in all controls but in a significantly lower proportion of cirrhotics (p<0.002). Serum primary BAs were higher in advanced cirrhotics compared to the rest. Cirrhotics, compared to controls, had a higher Enterobacteriaceae (potentially pathogenic) but lower Lachonospiraceae, Ruminococcaceae and Blautia (7α-dehydroxylating bacteria) abundance. CDCA was positively correlated with Enterobacteriaceae (r=0.57, p<0.008) while Ruminococcaceae were positively correlated with DCA (r=0.4, p<0.05). A positive correlation between Ruminococcaceae and DCA/CA (r=0.82, p<0.012) and Blautia with LCA/CDCA (r=0.61, p<0.03) was also seen. Prospective study: post-rifaximin, six early cirrhotics had reduction in Veillonellaceae and in secondary/primary BA ratios. CONCLUSIONS Cirrhosis, especially advanced disease, is associated with a decreased conversion of primary to secondary fecal BAs, which is linked to abundance of key gut microbiome taxa.


PLOS ONE | 2013

Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy

Jasmohan S. Bajaj; Douglas M. Heuman; Arun J. Sanyal; Phillip B. Hylemon; Richard K. Sterling; R. Todd Stravitz; Michael Fuchs; Jason M. Ridlon; Kalyani Daita; Pamela Monteith; Nicole A. Noble; Melanie B. White; Andmorgan Fisher; Masoumeh Sikaroodi; Huzefa Rangwala; Patrick M. Gillevet

Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE. Methods Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin. Results There was a significant improvement in cognition(six of seven tests improved,p<0.01) and endotoxemia (0.55 to 0.48 Eu/ml, p = 0.02) after rifaximin. There was a significant increase in serum saturated (myristic, caprylic, palmitic, palmitoleic, oleic and eicosanoic) and unsaturated (linoleic, linolenic, gamma-linolenic and arachnidonic) fatty acids post-rifaximin. No significant microbial change apart from a modest decrease in Veillonellaceae and increase in Eubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered on Enterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar. Conclusions Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance. Trial Registration ClinicalTrials.gov NCT01069133


Hepatology | 2008

Prevention of free fatty acid–induced hepatic lipotoxicity by 18β‐glycyrrhetinic acid through lysosomal and mitochondrial pathways

Xudong Wu; Luyong Zhang; Emily C. Gurley; Elaine Studer; Jing Shang; Tao Wang; Cuifen Wang; Ming Yan; Zhenzhou Jiang; Phillip B. Hylemon; Arun J. Sanyal; William M. Pandak; Huiping Zhou

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and affects millions of people worldwide. Despite the increasing prevalence of NAFLD, the exact molecular/cellular mechanisms remain obscure and effective therapeutic strategies are still limited. It is well‐accepted that free fatty acid (FFA)‐induced lipotoxicity plays a pivotal role in the pathogenesis of NAFLD. Inhibition of FFA‐associated hepatic toxicity represents a potential therapeutic strategy. Glycyrrhizin (GL), the major bioactive component of licorice root extract, has a variety of pharmacological properties including anti‐inflammatory, antioxidant, and immune‐modulating activities. GL has been used to treat hepatitis to reduce liver inflammation and hepatic injury; however, the mechanism underlying the antihepatic injury property of GL is still poorly understood. In this report, we provide evidence that 18 β‐glycyrrhetinic acid (GA), the biologically active metabolite of GL, prevented FFA‐induced lipid accumulation and cell apoptosis in in vitro HepG2 (human liver cell line) NAFLD models. GA also prevented high fat diet (HFD)‐induced hepatic lipotoxicity and liver injury in in vivo rat NAFLD models. GA was found to stabilize lysosomal membranes, inhibit cathepsin B expression and enzyme activity, inhibit mitochondrial cytochrome c release, and reduce FFA‐induced oxidative stress. These characteristics may represent major cellular mechanisms, which account for its protective effects on FFA/HFD‐induced hepatic lipotoxicity. Conclusion: GA significantly reduced FFA/HFD‐induced hepatic lipotoxicity by stabilizing the integrity of lysosomes and mitochondria and inhibiting cathepsin B expression and enzyme activity. (HEPATOLOGY 2008.)


Gut microbes | 2013

Cirrhosis, bile acids and gut microbiota: Unraveling a complex relationship

Jason M. Ridlon; João M. P. Alves; Phillip B. Hylemon; Jasmohan S. Bajaj

A picture is now starting to emerge regarding the liver-bile acid-microbiome axis. Increasing levels of the primary bile acid cholic acid (CA) causes a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of the harmful secondary bile acid deoxycholic acid (DCA). During progression of cirrhosis, the microbiome, both through their metabolism, cell wall components (LPS) and translocation lead to inflammation. Inflammation suppresses synthesis of bile acids in the liver leading to a positive-feedback mechanism. Decrease in bile acids entering the intestines appears to favor overgrowth of pathogenic and pro-inflammatory members of the microbiome including Porphyromonadaceae and Enterobacteriaceae. Decreasing bile acid concentration in the colon in cirrhosis is also associated with decreases in Clostridium cluster XIVa, which includes bile acid 7α-dehydroxylating bacteria which produce DCA. Rifaximin treatment appears to act by suppressing DCA production, reducing endotoxemia and harmful metabolites without significantly altering microbiome structure. Taken together, the bile acid pool size and composition appear to be a major regulator of microbiome structure, which in turn appears to be an important regulator of bile acid pool size and composition. The balance between this equilibrium is critical for human health and disease.


Biochemical and Biophysical Research Communications | 2002

LXRα is the dominant regulator of CYP7A1 transcription

Seema Gupta; William M. Pandak; Phillip B. Hylemon

Abstract Cholesterol 7α-hydroxylase (CYP7A1) catalyzes the rate-limiting step in the classic pathway of bile acid biosynthesis. Dietary cholesterol stimulates CYP7A1 transcription via activation of oxysterol receptor, LXRα, whereas bile acids repress transcription through FXR-mediated induction of SHP protein. The aim of this study was to determine the quantitative role that LXR- and FXR-regulated pathways play in regulating CYP7A1 and SHP in both rat and hamster models. In rats fed a 2% cholesterol diet, both SHP and CYP7A1 mRNA levels were elevated. The inability to induce CYP7A1 mRNA levels by cholesterol feeding in hamsters led to a decline in SHP mRNA levels. Elimination of hepatic bile acid flux by cholestyramine or bile fistula resulted in a marked repression of rat SHP mRNA levels. These results suggest that under conditions of both SHP and LXRα activation, stimulatory effect of LXRα overrides the inhibitory effect of FXR and results in an induction of rat CYP7A1 mRNA levels.

Collaboration


Dive into the Phillip B. Hylemon's collaboration.

Top Co-Authors

Avatar

William M. Pandak

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Huiping Zhou

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Douglas M. Heuman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jasmohan S. Bajaj

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Studer

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Emily C. Gurley

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Shunlin Ren

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Melanie B. White

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge