Phillip Blaskovich
Mansfield University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phillip Blaskovich.
Anesthesia & Analgesia | 2013
Rachit Ohri; Jeffrey Chi-Fei Wang; Phillip Blaskovich; Lan N. Pham; Daniel S. Costa; Gary A. Nichols; William Hildebrand; Nelson Scarborough; Clifford J. Herman; Gary R. Strichartz
BACKGROUND:Acute postoperative pain causes physiological deficits and slows recovery. Reduction of such pain by local anesthetics that are delivered for several days postoperatively is a desirable clinical objective, which is approached by a new formulation and applied in animal studies reported here. METHODS:We subcutaneously injected a new formulation of poly-lactic-co-glycolic acid polymer microspheres, which provides steady drug release for 96+ hours into rats at the dorsal region 2 hours before surgery. A single 1.2-cm-long skin incision was followed by blunt dissection of skin away from the underlying fascia, and closed by 2 sutures, followed by 14 days of testing. Microspheres containing 5, 10, 20, and 40 mg bupivacaine were injected locally 2 hours before surgery; bupivacaine-free microspheres were the vehicle control, and bupivacaine HCl solution (0.5%), the positive control. Mechanical sensitivity was determined by the frequency of local muscle contractions to repeated pokes with nylon monofilaments (von Frey hairs) exerting 4 and 15 g forces, testing, respectively, allodynia and hyperalgesia, and by pinprick. RESULTS:Injection of bupivacaine microspheres (40 mg drug) into intact skin reduced responses to 15 g von Frey hairs for 6 hours and to pinprick for 36 hours. Respective reductions from bupivacaine HCl lasted for 3 and 2 hours. Skin incision and dissection alone caused mechanical allodynia and hyperalgesia for 14 days. Microspheres containing 20 or 40 mg bupivacaine suppressed postoperative hypersensitivity for up to 3 days, reduced integrated allodynia (area under curve of response versus time) over postoperative days 1 to 5 by 51% ± 20% (mean ± SE) and 78% ± 12%, and reduced integrated hyperalgesia by 55% ± 13% and 64% ± 11%, for the respective doses. Five and ten milligrams bupivacaine in microspheres and the 0.5% bupivacaine solution were ineffective in reducing postoperative hypersensitivity, as were 40 mg bupivacaine microspheres injected contralateral to the incision. CONCLUSIONS:Significant suppression of postoperative pain by the slow-release bupivacaine preparation outlasts its anesthetic action on intact skin. These findings demonstrate preventive analgesia and indicate the importance of acute processes in the development of chronic postoperative pain.
Regional Anesthesia and Pain Medicine | 2012
Rachit Ohri; Phillip Blaskovich; Jeffrey Chi-Fei Wang; Lan Pham; Gary A. Nichols; William Hildebrand; Daniel S. Costa; Nelson Scarborough; Clifford J. Herman; Gary R. Strichartz
Background and Objectives To minimize acute postoperative pain, a new formulation of slowly released bupivacaine was developed. Methods Bupivacaine was microencapsulated at 60% (wt/wt) in poly-lactide-co-glycolide polymers and characterized for physicochemical properties and bupivacaine release kinetics. This formulation was injected around the rat sciatic nerve to produce an antinociceptive effect to toe pinch. Mechanical hyperalgesia following lateral plantar paw incision in rats was assessed for 7 to 14 days when the bupivacaine slow-release formulation was placed at the ipsilateral sciatic nerve and compared with the hyperalgesia that developed with various controls. Results Bupivacaine was released in vitro at a relatively constant rate over a period of ∼72 to 96 hours. Complete antinociception, shown as no response to toe pinch, lasted for 23 ± 7 hours, with a half-recovery time of 42 ± 8 hours after sciatic nerve injection of 0.4 mL of the microspheres delivering 34 mg of bupivacaine. Solutions of 0.5% (wt/vol) bupivacaine-HCl (0.1 mL) produced complete antinociception for less than 2 hours and recovery half-times of 2 hours. Postincisional mechanical hyperalgesia, shown by increased withdrawal responses to von Frey filaments, was absent for 24 hours and was lower than control for 96 hours, when the sciatic nerve was blocked by bupivacaine microspheres, whereas the 0.5% bupivacaine solution reduced postincisional pain for only 4 hours. Conclusions Corresponding to its far greater functional blocking time, the microsphere-bupivacaine formulation was able to significantly reduce postoperative pain below control levels for up to 4 days. These findings of several days of postoperative pain relief, for an injectable formulation containing a single active agent, present an improved and potentially promising therapy to prevent acute pain after surgery.
Anesthesia & Analgesia | 2015
Birgitta Schmidt; Rachit Ohri; Jeffrey Chi-Fei Wang; Phillip Blaskovich; Allen Kesselring; Nelson Scarborough; Clifford J. Herman; Gary R. Strichartz
BACKGROUND:Prolonged local anesthesia, particularly desirable to minimize acute and chronic postoperative pain, has been provided by microspheres that slowly release bupivacaine (MS-Bup). In this study, we report on the systemic drug concentrations and the local dermatopathology that occur after subcutaneous injection of MS-Bup. METHODS:Rats (approximately 300 g) were injected under the dorsolumbar skin with MS-Bup containing 40 mg of bupivacaine (base) or with 0.4 mL of 0.5% bupivacaine-HCl (BupHCl; 1.78 mg bupivacaine). Blood was drawn, under sevoflurane anesthesia, at 10 minutes to 144 hours, and the serum analyzed for total bupivacaine by liquid chromatography–tandem mass spectrometry. In different animals, skin punch biopsies (4 mm) were taken at 1, 3, 7, 14, and 30 days after the same drug injections, sectioned at 5 &mgr;m, and stained with hematoxylin–eosin. Samples from skin injected with BupHCl, with MS-Bup suspended in carboxymethyl cellulose (MS-Bup.CMC), or in methyl cellulose (MS-Bup.MC) were compared with their respective drug-free controls (placebos). RESULTS:Serum bupivacaine reached a maximal average value (n = 8) of 194.9 ng/mL at 8 hours after injection of MS-Bup (95% upper prediction limit = 230.2 ng/mL), compared with the maximal average (n = 6) serum level of 374.9 ng/mL (95% prediction limit = 470.6 ng/mL) at 30 minutes after injection of BupHCl. Serum bupivacaine decreased to undetectable levels (<3.23 ng/mL) at 8 hours after BupHCl and was detectable at approximately 20% of the maximal value at 144 hours after MS-Bup injection. BupHCl injection resulted in moderate lymphocytic infiltration of skeletal muscle at 1 and 3 days. MS-Bup.CMC and placebo-CMC caused extensive infiltration of macrophages, lymphocytes, and some neutrophils at 1 to 7 days, whereas MS-Bup.MC and placebo-MC caused only mild inflammation. CONCLUSIONS:Subcutaneous administration of microspheres releasing bupivacaine results in lower blood levels lasting for much longer times than those from bupivacaine solution.
Regional Anesthesia and Pain Medicine | 2014
Rachit Ohri; Jeffery Chi-Fei Wang; Lan Pham; Phillip Blaskovich; Daniel S. Costa; Gary A. Nichols; William Hildebrand; Nelson Scarborough; Clifford J. Herman; Gary R. Strichartz
Background and Objectives Postoperative pain alters physiological functions and delays discharge. Perioperative local anesthetics are effective analgesics in the immediate 1- to 2-day postoperative period, but acute pain often lasts longer. The goal of this work was to develop a local anesthetic formulation adhering to an intraoperative implanted device that reduces pain for at least 3 days after surgery. Methods Six groups, each with 8 rats, were studied. In a control group (group I), one 1.2-cm-long incision of the skin was followed by blunt dissection to separate the skin away from the underlying tissues and closing with 2 sutures. In 3 of the treatment groups, the same surgical procedure was used, with the subcutaneous space formed by the blunt dissection lined with a 1-cm square patch of hernia mesh coated with poly lactide co-glycolic acid microspheres containing approximately 17 mg of bupivacaine (group II), no drug (placebo; group III), or bupivacaine free-base powder (group IV). Uncoated mesh implants (group V) served as a secondary control. A standard bupivacaine solution (0.4 mL, 0.5%; 2-mg dose) was infiltrated subcutaneously 30 minutes before the surgery and served as a standard control (group VI). Mechanosensitivity of the skin was tested by the local subcutaneous muscle responses to cutaneous tactile stimulation by von Frey hairs with forces of 4 g (for allodynia) and 15 g (for hyperalgesia) preoperatively and for 7 postoperative days. Results Control rats (group I) showed mechanohypersensitivity, indicative of postoperative allodynia and hyperalgesia, for all 7 postoperative days. Mechanohyperalgesia in rats that received mesh coated with bupivacaine-releasing microspheres (group II) was reduced during this period to 13% of control postoperative values (P < 0.001); mesh coated with bupivacaine base (group IV) reduced it by 50% (P = 0.034). The placebo mesh (group III) and uncoated mesh (group V) caused no significant reduction of mechanohypersensitivity, and bupivacaine solution infiltrated before the incision (group VI) reduced hypersensitivity for only approximately 2 hours, an overall insignificant effect. Conclusions Bupivacaine slowly released for 72 hours from microspheres adsorbed to the hernia mesh significantly suppresses evoked postoperative hypersensitivity for at least 1 week and is more effective than a suspension of these microspheres or preoperative single-shot infiltration of bupivacaine.
Anesthesia & Analgesia | 2015
Gary R. Strichartz; Jeffrey Chi-Fei Wang; Phillip Blaskovich; Rachit Ohri
BACKGROUND:Postoperative pain is treated incompletely and ineffectively in many circumstances, and chronic postoperative pain causes suffering and diminishes productivity. The objective of this project is to determine whether a recently developed slow-release formulation of bupivacaine was effective in reducing the experimental chronic postoperative pain. METHODS:In male Sprague-Dawley rats (250–300 g body weight), bupivacaine-releasing microspheres (MS-Bupi), containing 60 mg of bupivacaine base, were locally injected (MS-Bupi-L) 2 hours preoperatively into the subcutaneous compartment at the locus for experimental thoracotomy. Hypersensitivity to tactile stimulation was assessed by reductions in the threshold force required to induce a response to von Frey filaments (VFH) applied to the hairy back near the incision/retraction site. Pain behavior was assessed using a Qualitative Hyperalgesia Profile. Control groups included rats receiving the same dose of MS-Bupi but at a distant site on the back (MS-Bupi-D, testing for systemic drug actions) and rats receiving the same mass of microspheres with no drug (MS-Placebo) at the wound site. Rats were tested for 3 days before and 28 days (postoperative days [PODs]) after the procedure. Withdrawal threshold differences, which were the primary outcome measure, among all treatment groups were assessed by the Kruskal-Wallis test, after which pairwise comparisons were made by determining Wilcoxon-Mann-Whitney odds (WMWodds), with Bonferroni correction of the confidence intervals. RESULTS:Microsphere bupivacaine released near the incision reduced the chronic tactile allodynia after thoracotomy. The threshold values during PODs 14 to 28 were different among the 3 treatment groups when examined on PODs 14, 16, 18, 23, 25, and 28 but not on POD21 (P = 0.0603). WMWodds showed that threshold of the MS-Bupi-L group differed from those of the MS-Bupi-D and the MS-Placebo groups for all the tested PODs, whereas the thresholds of the MS-Bupi-D group never differed from those of the MS-Placebo group. Area-under-curve analysis for threshold reductions below baseline, using WMWodds, also showed a reduction during the entire 28 PODs that was greater for the MS-Bupi-L group compared with the MS-Placebo or MS-Bupi-D group. The incidence of intense pain scores by the Qualitative Hyperalgesia Profile analysis was observed in 7 of 8 rats in the MS-Placebo group and in 5 of 8 rats in the MS-Bupi-L group. CONCLUSIONS:Local slow release of bupivacaine subcutaneously from the MS-Bupi formulation suppresses postoperative mechanical hypersensitivity for ≥4 weeks after experimental thoracotomy. Systemic bupivacaine from this treatment has no effect on this hypersensitivity.
Archive | 2010
Phillip Blaskovich; Rachit Ohri; Steven Bennett
Archive | 2012
Valentino Tramontano; Joshua Kennedy; Sajida Farooqi; Phillip Blaskovich; Rachit Ohri; Daniel S. Costa
Archive | 2013
Rachit Ohri; Stephen H. Wu; Les Hull; Phillip Blaskovich; Lan Pham; William H. Nau; Francesca Rossetto; Rupal Ayer
Archive | 2012
Rachit Ohri; Phillip Blaskovich; Lan Pham; David Giusti; Valentino Tramontano
Archive | 2013
Rachit Ohri; Lan Pham; Phillip Blaskovich; Les Hull; Rupal Ayer; Stephen H. Wu; Clifford J. Herman; William H. Nau; Francesca Rossetto; Allison Waller; Wenxing Huang; Paul DiCarlo; Mantao Xu; Xingyan Lu; Jiagui Li; Qinlin Gu; Harold M. Martins