Phillip E. Cornwell
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phillip E. Cornwell.
AIDS | 1992
Richard S. Beach; Emilio Mantero-Atienza; Gail Shor-Posner; Julian J. Javier; José Szapocznik; R. Morgan; Howerde E. Sauberlich; Phillip E. Cornwell; Carl Eisdorfer; Marianna K. Baum
ObjectiveTo determine whether specific nutrient abnormalities occur in earlier stages of HIV-1 infection, thereby preceding the marked wasting and malnutrition that accompany later stages of the infection. DesignA longitudinal investigation to determine biological, psychological and social factors thought to influence the progression and outcome of HIV-1 infection. Nutritional status was assessed using biochemical measurement of nutrient levels, dietary history, anthropometry and clinical examination for the signs and symptoms of nutritional deficiency or excess. SettingThe study was performed on an outpatient basis at the University of Miami School of Medicine. ParticipantsOne hundred homosexual men, aged between 20 and 55 years, who were asymptomatic other than persistent generalized lymphadenopathy (Centers for Disease Control stage III) and 42 age-matched homosexual men demonstrated to be free of HIV-1 infection at two 6-month intervals. Main outcome measuresBiochemical measurement of nutrient status, dietary history, anthropometry, clinical signs or symptoms of nutritional excess or deficiency were obtained for all participants. ResultsDespite few differences in mean blood levels of specific nutrients, prevalence of specific nutrient abnormalities was widespread among HIV-1-infected subjects, compared with non-infected male homosexual controls. Overtly and marginally low blood levels of vitamins A (18%), E (27%), riboflavin (26%), B6 (53%), and B12 (23%), together with copper (74%) and zinc (50%) were documented in HIV-1-seropositive subjects. With the exception of riboflavin, zinc, and copper, a similar prevalence of abnormalities among HIV-1-seronegative controls was not observed. ConclusionSpecific nutrient abnormalities occur with relative frequency in asymptomatic HIV-1 infection and may contribute to the rate and form of HIV-1 disease progression.
Journal of Chromatography B: Biomedical Sciences and Applications | 1993
Phillip E. Cornwell; Sarah L. Morgan; William H. Vaughn
A modification of a previously published method for analysis of total homocysteine in human serum is presented. The modification was implemented to allow use of a different derivatizing agent (i.e., 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonamide) which reacts much faster than the original derivatizing reagent and at a lower temperature. Shorter reaction time and lower temperature lead to less destruction of some biological thiols. In order to retain an isocratic mobile phase with the new derivatizing agent, a different concentration of acetonitrile was found that affords a 7-8 min retention time.
Cancer Research | 2004
Chandrika J. Piyathilake; Olga L. Henao; Maurizio Macaluso; Phillip E. Cornwell; Sreelatha Meleth; Douglas C. Heimburger; Edward E. Partridge
Several micronutrients have been implicated in cervical carcinogenesis. However, their mode of action is still a matter of speculation. In particular, it is unclear whether certain nutrients reduce the probability of acquiring high-risk human papillomavirus (HPV) or whether they facilitate the clearance of high-risk HPV. We conducted a 24-month prospective follow-up study to test the hypothesis that systemic concentrations of folate are associated with the occurrence and duration of high-risk HPV infections after controlling for other micronutrients (vitamins B12, A, E, and C, total carotene) and known risk factors for high-risk HPV infections and cervical cancer. Circulating concentrations of these micronutrients and risk factors for cervical cancer were determined in a cohort of 345 women who were at risk of developing cervical intraepithelial neoplasia. Using the hybrid capture 2 (HC-2) assay, high-risk HPV status was evaluated at 6-month intervals up to 24 months. All women had at least three consecutive visit high-risk HPV test results. Higher folate status was inversely associated with becoming HC-2 test-positive [odds ratio (OR): 0.27; 95% confidence interval (CI), 0.08–0.91; P = 0.04]. Women with higher folate status were significantly less likely to be repeatedly HC-2 test-positive (OR: 0.33; 95% CI, 0.13–0.86; P = 0.02) and more likely to become test-negative during the study (OR: 2.50; 95% CI, 1.18–5.30; P = 0.02). To our knowledge, this is the first long-term prospective follow-up study reporting an independent protective role of higher folate status on several aspects of the natural history of high-risk HPV after controlling for known risk factors and other micronutrients. Improving folate status in subjects at risk of getting infected or already infected with high-risk HPV may have a beneficial impact in the prevention of cervical cancer.
Toxicological Sciences | 1990
Peter W. Stacpoole; H. James Harwood; Don F. Cameron; Stephen H. Curry; Don Samuelson; Phillip E. Cornwell; Howarde E. Sauberlich
The chronic use of dichloroacetate (DCA) for diabetes mellitus or hyperlipoproteinemias has been compromised by neurologic and other forms of toxicity. DCA is metabolized to glyoxylate, which is converted to oxalate and, in the presence of adequate thiamine levels, to other metabolites. DCA stimulates the thiamine-dependent enzymes pyruvate dehydrogenase and alpha-ketoacid dehydrogenase. We postulated that the neurotoxicity from chronic DCA administration could result from depletion of body thiamine stores and abnormal metabolism of oxalate, a known neurotoxin. For 7 weeks, rats were fed ad lib. Purina chow and water or chow plus sodium DCA (50 mg/kg or 1.1 g/kg) in water. A portion of the DCA-treated animals also received intraperitoneal injections of 600 micrograms thiamine three times weekly or 600 micrograms thiamine daily by mouth. Thiamine status was assessed by determining red cell transketolase activity and, in a blinded manner, by recording the development of clinical signs known to be associated with thiamine deficiency. At the 50 mg/kg dose, chronic administration of DCA showed no clinical toxicity or effect on transketolase activity. At the 1.1 g/kg dose, however, DCA markedly increased the frequency and severity of toxicity and decreased transketolase activity 25%, compared to controls. Coadministration of thiamine substantially reduced evidence of thiamine deficiency and normalized transketolase activity. Inhibition of transketolase by DCA in vivo was not due to a direct action on the enzyme, however, since DCA, glyoxylate, or oxalate had no appreciable effects on transketolase activity in vitro. After 7 weeks, plasma DCA concentrations were similar in rats receiving DCA alone or DCA plus thiamine, while urinary oxalate was 86% above control in DCA-treated rats but only 28% above control in DCA plus thiamine-treated animals. No light microscopic changes were seen in peripheral nerve, lens, testis, or kidney morphology in either DCA-treated group, nor was there disruption of normal sperm production in the DCA-treated group. We conclude that stimulation by DCA of thiamine-requiring enzymes may lead to depletion of total body thiamine stores and to both a fall in transketolase activity and an increase in oxalate accumulation in vivo. DCA neurotoxicity may thus be due, at least in part, to thiamine deficiency and may be preventable with thiamine treatment.
Nutrition and Cancer | 2000
Stephen W. Thomson; Douglas C. Heimburger; Phillip E. Cornwell; Malcolm E. Turner; Howerde E. Sauberlich; Liesl Fox; C. E. Butterworth
We investigated whether total plasma homocysteine (tHcy) is associated with risk for cervical intraepithelial neoplasia (CIN). tHcy was evaluated, along with numerous risk factors for CIN and biochemical indexes of nutrients, in a previously reported study population of 294 subjects with CIN and 170 female controls without CIN. tHcy was significantly higher in cases than in controls (9.1 vs. 8.3 μmol/l, p = 0.002). Human papillomavirus type 16 infection [odds ratio (OR) = 6.7], oral contraceptive use (OR = 6.0), parity (OR = 2.2), and cigarette smoking (OR = 1.9) were significantly associated with CIN after adjustment for each other and for age, number of sexual partners, and plasma tHcy, folate, iron, and zinc. Human papillomavirus type 16 positivity increased risk for CIN more when tHcy was >9.12 μmol/l (OR = 4.7) than when it was ≤9.12 μmol/l (OR = 3.0). Cigarette use increased risk for CIN when tHcy was >9.12 μmol/l (OR = 3.9), but not when tHcy was ≤9.12 μmol/l (OR = 1.5). Parity increased risk for CIN more when tHcy was >9.12 μmol/l (OR = 4.0) than when tHcy was ≤9.12 μmol/l (OR = 2.0). These results suggest that elevated plasma tHcy is a risk factor for cervical dysplasia and that it enhances the effects of other risk factors. It is unknown whether tHcy is serving as a marker of folate deficiency or is acting through other mechanisms.
Nutrition | 2000
Stephen W. Thomson; Douglas C. Heimburger; Phillip E. Cornwell; Malcolm E. Turner; Howerde E. Sauberlich; Liesl Fox; C. E. Butterworth
We examined correlates of total plasma homocysteine (tHcy) in 294 subjects with cervical intraepithelial neoplasia and 170 control subjects. Associations of tHcy with risk factors for cervical intraepithelial neoplasia and 24-h intakes and biochemical indices of nutrients were examined. Plasma and red blood cell folate and plasma B(12) were strong inverse correlates of tHcy (r = -0.35, -0. 31, and -0.27, respectively). Plasma copper and severity of dysplasia were positively correlated with tHcy (r = 0.14 and 0.21, respectively). A stepwise regression model that included red blood cell folate, plasma copper, grade of dysplasia, ethnicity, intake of polyunsaturated fatty acids, plasma vitamin B(12), intake of fat, and oral contraceptive use explained 29% of the variation in tHcy. Two hundred thirty-five subjects with cervical intraepithelial neoplasia were randomized to receive folic acid (10 mg/d) or placebo for 6 mo. After 2, 4, and 6 mo, mean tHcy in the folate-supplemented group (7.2 +/- 1.8, 7.0 +/- 1.9, and 7.0 +/- 2.3 micromol/L, respectively) was significantly lower than baseline and the placebo group at 2, 4, and 6 mo (8.9 +/- 3.1, 8.4 +/- 3.0, and 8.9 +/- 3.1 micromol/L, respectively). Supplementation lowered tHcy even in subjects in the highest quintile of baseline folate. Folate, vitamin B(12), copper, and severity of dysplasia are associated with tHcy. Folate supplementation significantly lowers tHcy even in folate-replete subjects.
Analytical chemistry insights | 2007
Chandrika J. Piyathilake; Constance B. Robinson; Phillip E. Cornwell
Background: We have recently developed a new technique for quantitatively measuring protein-bound 3-nitrotyrosine (3-NT), a footprint of nitrosative stress, utilizing high-performance liquid chromatography with an electrochemical detection (HPLC-ECD) system. Using this system, we showed that 3-NT formation was upregulated in the sputum of both COPD and asthmatic patients. However, in order to improve the accuracy of the measurement system, We have to resolve some problems which were the influence of free amino acid form of 3-NT and of salivary contamination. Objectives: We initially investigated the amount of the free amino acid form of 3-NT in induced sputum and compared with that of protein-bound 3-NT. Next, we evaluated the concentration of protein-bound 3-NT in saliva and compared with that in induced sputum by means of HPLC-ECD. Methods: Five male COPD patients were enrolled. Induced sputum and saliva were obtained from the patients. The free amino acid form of 3-NT in sputum and saliva was measured by HPLC-ECD, and the protein-bound 3-NT and tyrosine in sputum and saliva were enzymatically hydrolyzed by Streptomyces griseus Pronase and measured for the protein hydrolysate by HPLC-ECD. Results: The mean value of the amount of protein-bound 3-NT was 65.0 fmol (31.2 to 106.4 fmol). On the other hand, the amount of the free amino acid form of 3-NT was under the detection limit (<10 fmol). The levels of both 3-NT (sputum: 0.55 ± 0.15 pmol/ml, saliva: 0.02 ± 0.01 pmol/ml, p < 0.01) and tyrosine (sputum: 0.81 ± 0.43 μmol/ml, saliva: 0.07 ± 0.04 μmol/ml, p < 0.01) in saliva were significantly lower than in sputum. The percentage of 3-NT in saliva to that in sputum was about 3.1%, and that of tyrosine was about 9.0%. Conclusion: The free amino acid form of 3-NT does not affect the measurement of protein-bound 3-NT. Furthermore, the influence of salivary contamination on the measurement of protein-bound 3-NT in induced sputum by means of HPLC-ECD was very small and could be negligible.A protein digestion system using immobilized enzymes for protein identification and glycochain analyses has been developed, and a vibration reaction unit for micro-scale sample convection on an enzyme-immobilized solid surface was constructed. BSA as a model substrate was digested by this unit, and was successfully identified by mass spectrometry (MS) analyses. Compared to the conventional liquid-phase digestion, the reaction unit increased the number of matched peptides from 9 to 26, protein score from 455 to 1247, and sequence coverage from 21% to 48%. Glycopeptidase F (NGF), an enzyme that cleaves N-glycans from glycoproteins, was also immobilized and used to remove the glycochains from human immunoglobulin G (IgG). Trypsin and NGF were immobilized on the same solid surface and used to remove glycochains from IgG in single-step. Glycochains were labeled with fluorescent reagent and analyzed by HPLC. Several peaks corresponding to the glycochains of IgG were detected. These results suggested that the single-step digestion system, by immobilized multiple enzymes (trypsin and NGF) would be effective for the rapid structural analysis of glycoproteins.This research shows a novel method for hazard identification of a chemical and UV light on a single cell level with a laser probe beam. The laser probe beam was passed through interface of cell membrane/culture medium of a cultured human hepatoblastoma cell line HepG2. Deflection of the laser probe beam, which was induced by changes in concentration gradients due to the active materials movement across the cell membrane, was monitored. When a toxic hazard existed, a living cell was expected to be killed or injured, or cellular behaviors to be changed greatly. Then, the changing deflection signal from the living cell would become unchanged or altered in a different way. This was successfully demonstrated with cytotoxity of UV light and H2O2. Most of the cultured HepG2 cells showed changing deflection signals after 10 min illumination of UV-visible light longer than 370 nm, while almost all HepG2 cells showed unchanged deflection signal after 10 min illumination of UV-visible light with wavelength longer than 330 nm. The results suggested that UV light between 330–370 nm could kill the cells. Additions of H2O2 solution with different concentrations to the cell cultures caused the changing deflection signal from a living cell either unchanged or changed in different trend, suggesting toxicity of H2O2 to the cells. The results from the beam deflection detection agreed well with those obtained by the conventional trypane blue method.Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture). Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotile-plasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.We have determined and quantified spectrophotometrically the capacity of producing reactive oxygen species (ROS) as 1O2 during the photolysis with UV-A light of 5 new synthesized naphthyl ester derivates of well-known quinolone antibacterials (nalidixic acid (1), cinoxacin (2), norfloxacin (3), ciprofloxacin (4) and enoxacin (5)). The ability of the naphthyl ester derivatives (6–10) to generate singlet oxygen were detecting and for the first time quantified by the histidine assay, a sensitive, fast and inexpensive method. The following tendency of generation of singlet oxygen was observed: compounds 7 > 10 > 6 > 8 > 9 >> parent drugs 1–5.High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml−1/μMol ml−1)], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.Microalbuminuria is associated with hypertension and is a strong risk factor for subsequent chronic disease, both renal and coronary heart disease (CHD), Presently there are several methods available for measurement of microalbuminuria. The aim of this study was to evaluate if the three different methods gave similar information or if one of the assays were superior to the others. Blood pressure, inflammatory markers and cardiovascular mortality and morbidity were correlated with urine albumin analysed with a point-of-care testing (POCT) instrument, nephelometric determination of albumin and albumin/creatinine ratio in elderly males. The study population consisted of 103 diabetic and 603 nondiabetic males (age 77 years) in a cross-sectional study. We analyzed urine albumin with a HemoCue® Urine Albumin POCT instrument and a ProSpec® nephelometer and albumin/creatinine ratio. There were strong correlations between both systolic and diastolic blood pressure and all three urine albumin methods (p < 0.0001). There were also significant correlations between the different urine albumin measurements and serum amyloid A component, high-sensitivity C-reactive protein and interleukin-6. The three different urine albumin methods studied provided similar information in relation to cardiovascular disease. There was a strong correlation between systolic and diastolic blood pressure and microalbuminuria in both the whole study population and in nondiabetic males emphasizing the role of hypertension in glomerular damage. The good correlation between the studied urine albumin measurements show that all three methods can be used for monitoring urine albumin excretion.Chromium is an important constituent widely used in different industrial processes for production of various synthetic materials. For evaluation of workers’ exposure to trace toxic metal of Cr (III), environmental and biological monitoring are essential processes, in which, preparation of samples is one of the most time-consuming and error-prone aspects prior to analysis. The use of solid-phase extraction (SPE) has grown and is a fertile technique of sample preparation as it provides better results than those produced by liquid-liquid extraction (LLE). SPE using mini columns filled with XAD-4 resin was optimized regarding to sample pH, ligand concentration, loading flow rate, elution solvent, sample volume, elution volume, amount of resins, and sample matrix interferences. Chromium was retained on solid sorbent and was eluted with 2 M HNO3 followed by simple determination of analytes by using flame atomic absorption spectrometery. Obtained recoveries of metal ion were more than 92%. The optimized procedure was also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Through this study, suitable results were obtained for relative standard deviation, therefore, it is concluded that, this optimized method can be considered to be successful in simplifying sample preparation for trace residue analysis of Cr in different matrices for evaluation of occupational and environmental exposures. To evaluate occupational exposure to chromium, 16 urine samples were taken, prepared, and analyzed based on optimized procedure.Mistletoe Extracts (ME) are of growing interest to pharmacological research because of their apoptosis-inducing/cytostatic and immunomodulatory effects. The standardization of the three different groups of Mistletoe Isolectins (ML-I, II and III) is often rendered more difficult since the primary structures are nearly identical. Their classification is based on their Galactose- and N-acetyl-D-galactosamine (GalNAc)-specificity which was measured by various inhibitory assays. The aim of the present study was to improve the characterization of the direct binding activity of the isolectins from ME to immobilized lactose, GalNAc and to the oligosaccharide asialofetuin. After careful ultrafiltration of fresh ME, affinity chromatography was carried out using lactose- agarose, GalNAc—agarose and asialofetuin—affigel 15 columns. MLs were further purified by Sephadex G-100 or by cation exchange chromatography which was adapted to a Fast Protein Liquid Chromatography (FPLC) system. Proteins from both fresh plants and commercial ME were able to bind immobilized lactose to a considerable extent. The majority of this lectin has a B-chain with a Molecular Weight (MW) of 34kD and an A-chain with a MW of 29 kD (ML-I). Only a minor part of the lactose-binding proteins has a lower MW, namely 32kD and 27kD (MLII). However, neither MLs which were eluted from lactose columns, nor the proteins from fresh plant or ME showed a direct binding to the immobilized GalNAc. In spite of this deficiency, GalNAc was able to induce a considerable (25% and 32%) inhibitory effect on their binding to immobilized asialofetuin indicating a discrepancy between the lectin binding and inhibiting effects of GalNAC. Consequently, for an improved standardization of ME more specific sugar molecules are necessary.Pentavalent technetium-99m dimercaptosuccinic acid (99mTc-(V)DMSA) is a tumor-seeking agent which was introduced to evaluate, image, and manage many types of cancers. In this review, the beginning of, and the most recent applications of using this agent was appraised. The relation with tumor cell detection and proliferation was reported and several mechanisms of uptake of 99mTc-(V)DMSA in tumor cells are described.We studied the near UV absorption spectrum of canine plasminogen. There are 19 tryptophans, 19 phenylalanines and 34 tyrosines in the protein. 4th derivative spectra optimized for either tryptophan or tyrosine give a measure of the polarity of the environments of these two aromatic amino acids. Plasminogen at temperatures between 0 °C and 37 °C exists as a mixture of four conformations: closed-relaxed, open-relaxed, closed-compact, and open-compact. The closed to open transition is driven by addition of ligand to a site on the protein. The relaxed to compact transition is driven by increasing temperature from 0 °C to above 15–20 °C. When the conformation of plasminogen is mainly closed-relaxed, the 4th derivative spectra suggest that the average tryptophan environment is similar to a solution of 20% methanol at the same temperature. Under the same conditions, 4th derivative spectra suggest that the average tyrosine environment is similar to water. These apparent polarities change as the plasminogen is forced to assume the other conformations. We try to rationalize the information based on the known portions of the plasminogen structure.Chirasil-β-Dex containing an undecamethylene spacer (C11-Chirasil-Dex) was synthesized and used as chiral stationary phase (CSP) in enantioselective gas chromatography (GC). The versatility of the new stationary phase in the simultaneous enantiomeric separation of a set of N-alkylated barbiturates is demonstrated.We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.The present study introduces a method for determining the labile iron pool (LIP) in human lymphocytes. It is measured using the probe CP655, the fluorescence of which is stoichiometrically quenched by the addition of iron. The intracellular CP655 fluorescence in lymphocytes was quenched by increasing intracellular iron concentrations using the highly lipophilic 8-hydroxyquinoline iron complex. Intracellular fluorescence quenching, mediated by the physiological intracellular labile iron, can be recovered on the addition of excess membrane-permeable iron chelator, CP94. The intracellular probe concentration was measured using laser scanning microscopy. An ex situ calibration was performed in a “cytosolic” medium based on the determined intracellular CP655 concentration and probe fluorescence quenching in the presence of iron. The concentration of the LIP of healthy human lymphocytes was determined to be 0.57 ± 0.27 μM. The use of the fluorescent probe CP655 renders it possible to record the time course of iron uptake and iron chelation by CP94 in single intact lymphocytes.The aim of this study is to adopt the approach of metabolic fingerprinting through the use of Fourier Transform Infrared (FTIR) technique to understand changes in the chemical structure in Padina tetrastromatica (Hauck). The marine brown alga under study was grown in two different environmental conditions; in natural seawater (P. tetrastromatica (c)) and in seawater suplemented with 50 ppm of cadmium (P. tetrastromatica (t)) for a three-week period in the laboratory. The second derivative, IR specrum in the mid-infrared region (4000–400 cm−1) was used for discriminating and identifying various functional groups present in P. tetrastromatica (c). On exposure to Cd, P. tetrastromatica (t) accumulated 412 ppm of Cd and showed perturbation in the band structure in the mid-IR absorption region. Variation in spectral features of the IR bands of P. tetrastromatica (untreated and treated) suggests that cadmium ions bind to hydroxyl, amino, carbonyl and phosphoryl functionalities. This was attributable to the presence of the following specific bands. A band at 3666 cm−1 in untreated P. tetrastromatica (c) while a band at 3560 cm−1 in Cd-treated P. tetrastromatica (t) due to non bonded and bonded O-H respectively. Similarly, non bonded N-H for P. tetrastromatica (c) showed two bands at 3500 cm−1 and 3450 cm−1 due to the N-H stretching vibrations and a band at 1577 cm−1 due to N-H bending vibrations, while an intense band at 3350 cm−1 due to bonded N-H stretching vibrations and at 1571 cm−1 due to bending vibrations was observed for Cd-treated P. tetrastromatica (t). Involvement of ester carbonyl group is characterized by the presence of a band at 1764 cm−1 in untreated P. tetrastromatica (c) while the Cd-treated P. tetrastromatica (t) showed the band at 1760 cm−1. The intensity of the band at 1710 cm−1 in the control samples decreased drastically after cadmium treatment indicating carbonyl of COOH to be involved in metal chelation. A band at 1224 cm−1 for untreated P. tetrastromatica (c) and at 1220 cm−1 for Cd-treated P. tetrastromatica (t) is indicative of the involvement of phosphoryl group in metal binding. Several other such changes were also evident and discussed in this paper. Based on our observation, FTIR technique proves to be an efficient tool for detecting structural changes and probable binding sites induced by the presence of a metal pollutant, cadmium, in the marine environment.A high-performance liquid chromatographic (HPLC) method has been developed for the separation and determination of S- and R-enantiomers of betaxolol in tablets and ophthalmic preparations. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with fluorescence detection at excitation/emission wavelengths 275/305 nm. The polar ionic mobile phase (PIM) consists of methanol-glacial acetic acid-triethylamine, (100:0.020:0.025, v/v/v) has been used at a flow rate of 1.5 ml/min. All analytes with S-(–)-atenolol as internal standard were conducted at ambient temperature. The method is highly specific where another coformulated compounds did not interfere. The stability of betaxolol enantiomers under different degree of temperature also studied. The results showed that it is stable for at least 7 days at 70°C. The method validated for its linearity, accuracy, precision and robustness. Experimental design was used during validation to evaluate method robustness. Using the chromatographic conditions described, S- and R-betaxolol were well resolved with mean retention times of 11.3 and 12.6 min, respectively. Linear response (r > 0.997) was observed over the range of 10–500 ng/ml of betaxolol enantiomers, with detection limit of 5 ng/ml. The recoveries of S- and R-betaxolol from tablets and ophthalmic preparation ranged from 97.4 to 101.4% and 98.0 to 102.0%, respectively. The mean relative standard deviation (R.S.D.%) for both enantiomers were 1.1–1.4% and 1.3–1.7% in tablets and ophthalmic solution, respectively.Protein kinases catalyze the transfer of the γ-phosphoryl group of adenosine triphosphate (ATP) to the hydroxyl groups of protein side chains, and they play critical roles in regulating cellular signal transduction and other biochemical processes. They are attractive targets for today’s drug discovery and development, and many pharmaceutical companies are intensively developing various kinds of protein kinase inhibitors. A good example is the recent success with the Bcr-Abl tyrosine kinase inhibitor imatinib mesylate (Gleevec™) in the treatment of chronic myeloid leukemia. Though imatinib has dramatically improved the treatment of Bcr-Abl-positive chronic myeloid leukemia, resistance is often found in patients with advanced-stage disease. Several mechanisms have been proposed to explain this resistance, including point mutations within the Abl kinase domain, amplification of the bcr-abl gene, overexpression of the corresponding mRNA, increased drug efflux mediated by P-glycoprotein, and activation of the Src-family kinase (SFK) Lyn. We set out to develop a novel drug whose affinity for Abl is higher than that of imatinib and whose specificity in inhibiting Lyn is higher than that of SFK/Abl inhibitors such as dasatinib (Sprycel™) or bosutinib (SKI-606). Our work has led to the development of NS-187 (INNO-406), a novel Abl/Lyn dual tyrosine kinase inhibitor with clinical prospects. To provide an overview of how a selective kinase inhibitor has been developed, this review presents chemical-modification studies carried out with the guidance of molecular modeling, the structural basis for the high potency and selectivity of NS-187 based on the X-ray structure of the NS-187/Abl complex, and the biological profiling of NS-187, including site-directed mutagenesis experiments.
The Journal of Infectious Diseases | 1973
Leopoldo F. Montes; Carlos L. Krumdieck; Phillip E. Cornwell
Nutrition | 2007
Chandrika J. Piyathilake; Maria Azrad; Maurizio Macaluso; Gary L. Johanning; Phillip E. Cornwell; Edward E. Partridge; Douglas C. Heimburger
Atherosclerosis | 2004
Mohammad A. Khaled; Phillip E. Cornwell