Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip G. Bell is active.

Publication


Featured researches published by Phillip G. Bell.


Journal of The International Society of Sports Nutrition | 2012

Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

Glyn Howatson; Michael Hoad; Stuart Goodall; Jamie Tallent; Phillip G. Bell; Duncan N. French

BackgroundIt is well documented that exercise-induced muscle damage (EIMD) decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA) supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers.MethodsTwelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg) were randomly assigned to a supplement (n = 6) or placebo (n = 6) group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK), maximal voluntary contraction (MVC), muscle soreness (DOMS), vertical jump (VJ), thigh circumference (TC) and calf circumference (CC) were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise.ResultsA significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P<0.05). Furthermore, the recovery of MVC was greater in the BCAA group (P<0.05). The VJ, TC and CC were not different between groups.ConclusionThe present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281.


Nutrients | 2014

Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling

Phillip G. Bell; Ian Walshe; Gareth W. Davison; Emma Stevenson; Glyn Howatson

This investigation examined the impact of Montmorency tart cherry concentrate (MC) on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16) were divided into equal groups and consumed 30 mL of MC or placebo (PLA), twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), interleukin-1-beta (IL-1-β), high-sensitivity C-reactive protein (hsCRP) and creatine kinase (CK) were conducted. LOOH (p < 0.01), IL-6 (p < 0.05) and hsCRP (p < 0.05) responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.


Scandinavian Journal of Medicine & Science in Sports | 2014

The role of cherries in exercise and health

Phillip G. Bell; Malachy P. McHugh; Emma Stevenson; Glyn Howatson

Recently, cherries and cherry products have received growing attention within the literature with regard to their application in both exercise and clinical paradigms. Reported to be high in anti‐inflammatory and anti‐oxidative capacity, cherries and their constituents are proposed to provide a similar but natural alternative akin to over‐the‐counter non‐steroidal anti‐inflammatory drugs (NSAIDs) or analgesics. Within exercise paradigms, concern has been raised with regard to the use of products, which inhibit such inflammatory or oxidative actions, because of the possibility of the blunting of physiological training adaptations. Despite this, numerous scenarios exist both within exercise and clinical populations where a goal of optimal recovery time is more important than physiological adaptation. This review critically evaluates and discusses the use of cherries as a supplementation strategy to enhance recovery of muscle function, inhibit exercise‐induced inflammation, oxidative stress, and pain primarily; furthermore, the potential application of cherries to clinical populations is discussed.


Applied Physiology, Nutrition, and Metabolism | 2015

Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise

Phillip G. Bell; Ian Walshe; Gareth W. Davison; Emma Stevenson; Glyn Howatson

The impact of Montmorency tart cherry (Prunus cerasus L.) concentrate (MC) on physiological indices and functional performance was examined following a bout of high-intensity stochastic cycling. Trained cyclists (n = 16) were equally divided into 2 groups (MC or isoenergetic placebo (PLA)) and consumed 30 mL of supplement, twice per day for 8 consecutive days. On the fifth day of supplementation, participants completed a 109-min cycling trial designed to replicate road race demands. Functional performance (maximum voluntary isometric contraction (MVIC), cycling efficiency, 6-s peak cycling power) and delayed onset muscle soreness were assessed at baseline, 24, 48, and 72 h post-trial. Blood samples collected at baseline, immediately pre- and post-trial, and at 1, 3, 5, 24, 48, and 72 h post-trial were analysed for indices of inflammation (interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, high-sensitivity C-reactive protein (hsCRP)), oxidative stress (lipid hydroperoxides), and muscle damage (creatine kinase). MVIC (P < 0.05) did not decline in the MC group (vs. PLA) across the 72-h post-trial period and economy (P < 0.05) was improved in the MC group at 24 h. IL-6 (P < 0.001) and hsCRP (P < 0.05) responses to the trial were attenuated with MC (vs. PLA). No other blood markers were significantly different between MC and PLA groups. The results of the study suggest that Montmorency cherry concentrate can be an efficacious functional food for accelerating recovery and reducing exercise-induced inflammation following strenuous cycling exercise.


Medicine and Science in Sports and Exercise | 2013

Effect of Milk on Team Sport Performance after Exercise-Induced Muscle Damage.

Emma Cockburn; Phillip G. Bell; Emma Stevenson

INTRODUCTION Exercise-induced muscle damage (EIMD) leads to increases in intramuscular proteins observed in the blood stream and delayed onset of muscle soreness, but crucial for athletes are the decrements in muscle performance observed. Previous research has demonstrated that carbohydrate-protein supplements limit these decrements; however, they have primarily used isokinetic dynamometry, which has limited applicability to dynamic sport settings. Therefore, the aim of this study was to investigate the effects of a carbohydrate-protein milk supplement consumed after muscle-damaging exercise on performance tests specific to field-based team sports. METHODS Two independent groups of seven males consumed either 500 mL of milk or a control immediately after muscle-damaging exercise. Passive and active delayed onset of muscle soreness, creatine kinase, myoglobin, countermovement jump height, reactive strength index, 15-m sprint, and agility time were assessed before and 24, 48, and 72 h after EIMD. The Loughborough Intermittent Shuttle Test was also performed before and 48 h after EIMD. RESULTS At 48 h, milk had a possible benefit for limiting increases in 10-m sprint time and a likely benefit of attenuating increases in mean 15-m sprint time during the Loughborough Intermittent Shuttle Test. At 72 h, milk had a possible benefit for limiting increases in 15-m sprint time and a likely benefit for the attenuation of increases in agility time. All other effects for measured variables were unclear. CONCLUSION The consumption of milk limits decrements in one-off sprinting and agility performance and the ability to perform repeated sprints during the physiological simulation of field-based team sports.


Nutrients | 2016

The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise

Phillip G. Bell; Emma Stevenson; Gareth W. Davison; Glyn Howatson

This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise.


Medicine and Science in Sports and Exercise | 2017

The physiological profile of a multiple tour de france winning cyclist

Phillip G. Bell; Matthew Furber; Ken A. van Someren; Ana Anton-Solanas

Introduction This case study reports a range of physiological characteristics in a two-time Tour de France champion. Methods After body composition assessment (dual-energy x-ray absorptiometry), two submaximal cycling step tests were performed in ambient (20°C, 40%) and hot and humid (30°C, 60% [HH]) conditions from which measures of gross efficiency (GE), lactate-power landmarks, and heart rate responses were calculated. In addition, thermoregulatory and sweat responses were collected throughout. V˙O2peak and peak power output (PPO) were also identified after a separate ramp test to exhaustion. Results V˙O2peak and PPO were 5.91 L·min−1 (84 mL·kg−1·min−1) and 525 W, respectively, whereas mean GE values were 23.0% and 23.6% for ambient and HH conditions, respectively. In addition to superior GE, power output at 4 mmol·L−1 lactate was higher in HH versus ambient conditions (429.6 vs 419.0 W) supporting anecdotal reports from the participant of good performance in the heat. Peak core and skin temperature, sweat rate, and electrolyte content were higher in HH conditions. Body fat percentage was 9.5%, whereas total fat mass, lean mass, and bone mineral content were 6.7, 61.5, and 2.8 kg, respectively. Conclusion The aerobic physiology and PPO values indentified are among the highest reported for professional road cyclists. Notably, the participant displayed both a high V˙O2peak and GE, which is uncommon among elite cyclists and may be a contributing factor to their success in elite cycling. In addition, performance in HH conditions was strong, suggesting effective thermoregulatory physiology. In summary, this is the first study to report physiological characteristics of a multiple Tour de France champion in close to peak condition and suggests what may be the prerequisite physiological and thermoregulatory capacities for success at this level.


Journal of Sports Sciences | 2015

Effects of seated and standing cold water immersion on recovery from repeated sprinting

Jonathan Leeder; Ken van Someren; Phillip G. Bell; John Spence; Andrew P. Jewell; David Gaze; Glyn Howatson

Abstract This study investigated the effects of two different hydrostatic pressures (seated or standing) during cold water immersion at attenuating the deleterious effects of strenuous exercise on indices of damage and recovery. Twenty four male well-trained games players (age 23 ± 3 years; body mass 81.4 ± 8.7 kg: O2max 57.5 ± 4.9 ml∙kg−1∙min−1) completed the Loughborough Intermittent Shuttle Test (LIST) and were randomly assigned to either a control, seated cold water immersion or a standing cold water immersion (14 min at 14°C). Maximal isometric voluntary contraction, counter-movement jump, creatine kinase, C-reactive protein, interleukin-6 and delayed onset muscle soreness (DOMS) were measured before and up to 72 h following the LIST. All dependent variables showed main effects for time (P < 0.05) following the LIST, indicating physiological stress and muscle damage following the exercise. There were no significant group differences between control and either of the cold water immersion interventions. Seated cold water immersion was associated with lower DOMS than standing cold water immersion (effect size = 1.86; P = 0.001). These data suggest that increasing hydrostatic pressure by standing in cold water does not provide an additional recovery benefit over seated cold water immersion, and that both seated and standing immersions have no benefit in promoting recovery following intermittent sprint exercise.


Applied Physiology, Nutrition, and Metabolism | 2018

The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes

Paula Rankin; Michael J. Lawlor; Frank Hills; Phillip G. Bell; Emma Stevenson; Emma Cockburn

The consumption of milk following eccentric exercise attenuates the effects of muscle damage in team-sport athletes. However, participation in team sport involves both concentric-eccentric loading and metabolic stress. Therefore, the aim of this study was to investigate the effects of postexercise milk consumption on recovery from a cycling protocol designed to simulate the metabolic demands of team sport. Ten female team-sport athletes participated in a randomised crossover investigation. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development, countermovement jump, 20-m sprint), muscle soreness and tiredness, serum creatine kinase, high-sensitivity C-reactive protein, and measures of oxidative stress (protein carbonyls and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio) were determined at pre-exercise and 24 h, 48 h, and 72 h postexercise. MILK had a possible beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 24 h (3.2% ± 7.8% vs. -6.2% ± 7.5%, MILK vs. CHO) and a possible beneficial effect in minimising soreness (baseline-48 h; baseline-72 h) and tiredness (baseline-24 h; baseline-72 h). There was no change in oxidative stress following the exercise protocol, though a likely benefit of milk was observed for GSH/GSSG ratio at baseline-24 h (0.369 ×/÷ 1.89, 1.103 ×/÷ 3.96, MILK vs. CHO). MILK had an unclear effect on all other variables. Consumption of 500 mL of milk after repeat sprint cycling had little to no benefit in minimising losses in peak torque or minimising increases in soreness and tiredness and had no effect on serum markers of muscle damage and inflammation.


Archive | 2017

Effects of acute high-intensity exercise on cognitive performance in trained individuals: A systematic review

Sarah E. Browne; Glyn Howatson; Mark J. Flynn; Barry V. O'Neill; Phillip G. Bell

BACKGROUND High-intensity exercise is generally considered to have detrimental effects on cognition. However, high fitness levels are suggested to alleviate this effect. OBJECTIVES The specific objective of this review was to evaluate the literature on the effect of acute high-intensity exercise on cognitive performance in trained individuals. METHODS Studies were sourced through electronic databases, reference lists of retrieved articles, and manual searches of relevant reviews. Included studies examined trained participants, included a high-intensity exercise bout, used a control or comparison group/condition, and assessed cognitive performance via general laboratory tasks during or ≤10min following exercise cessation. RESULTS Ten articles met the inclusion criteria. Results indicated that the effect of acute high-intensity exercise on cognitive performance in trained individuals is dependent on the specific cognitive domain being assessed. Generally, simple tasks were not affected, while the results on complex tasks remain ambiguous. Accuracy showed little tendency to be influenced by high-intensity exercise compared to measures of speed. CONCLUSION Multiple factors influence the acute exercise-cognition relationship and thus future research should be highly specific when outlining criteria such as fitness levels, exercise intensity, and exercise mode. Furthermore, greater research is needed assessing more cognitive domains, greater exercise durations/types, and trained populations at high intensities.

Collaboration


Dive into the Phillip G. Bell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Walshe

Northumbria University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malachy P. McHugh

Nicholas Institute of Sports Medicine and Athletic Trauma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Ellis

Northumbria University

View shared research outputs
Researchain Logo
Decentralizing Knowledge