Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip J. Daborn is active.

Publication


Featured researches published by Phillip J. Daborn.


Molecular Genetics and Genomics | 2001

DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid

Phillip J. Daborn; Sam Boundy; J. L. Yen; Barry R. Pittendrigh; Richard H. ffrench-Constant

Abstract. Mutagenesis can be used as a means of predicting likely mechanisms of resistance to novel classes of insecticides. We used chemical mutagenesis in Drosophila to screen for mutants that had become resistant to imidacloprid, a neonicotinoid insecticide. Here we report the isolation of two new dominant imidacloprid-resistant mutants. By recombinational mapping we show that these map to the same location as Rst(2)DDT. Furthermore, we show that pre-existing Rst(2)DDT alleles in turn confer cross-resistance to imidacloprid. In order to localize the Rst(2)DDT gene more precisely, we mapped resistance to both DDT and imidacloprid with respect to P-element markers whose genomic location is known. By screening for recombinants between these P-elements and resistance we localized the gene between 48D5–6 and 48F3–6 on the polytene chromosome map. The genomic sequence in this interval shows a cluster of cytochrome P450 genes, one of which, Cyp6g1, is over-expressed in all resistant strains examined. We are now testing the hypothesis that resistance to both compounds is associated with over-expression of this P450 gene.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects

Phillip J. Daborn; Nicholas R. Waterfield; C. P. Silva; Candy P. Y. Au; S. Sharma; Richard H. ffrench-Constant

Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a “symbiosis of pathogens” with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium.


PLOS Genetics | 2010

Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus.

Joshua M. Schmidt; Robert T. Good; Belinda Appleton; Jayne Sherrard; Greta C. Raymant; Michael Bogwitz; Jon Martin; Phillip J. Daborn; Michael E. Goddard; Philip Batterham; Charles Robin

The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ∼16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession.


Genetics | 2006

Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1

Henry Chung; Michael Bogwitz; Caroline McCart; Alex Andrianopoulos; Richard H. ffrench-Constant; Phillip Batterham; Phillip J. Daborn

Transposable elements are a major mutation source and powerful agents of adaptive change. Some transposable element insertions in genomes increase to a high frequency because of the selective advantage the mutant phenotype provides. Cyp6g1-mediated insecticide resistance in Drosophila melanogaster is due to the upregulation of the cytochrome P450 gene Cyp6g1, leading to the resistance to a variety of insecticide classes. The upregulation of Cyp6g1 is correlated with the presence of the long terminal repeat (LTR) of an Accord retrotransposon inserted 291bp upstream of the Cyp6g1 transcription start site. This resistant allele (DDT-R) is currently at a high frequency in D. melanogaster populations around the world. Here, we characterize the spatial expression of Cyp6g1 in insecticide-resistant and -susceptible strains. We show that the Accord LTR insertion is indeed the resistance-associated mutation and demonstrate that the Accord LTR carries regulatory sequences that increase the expression of Cyp6g1 in tissues important for detoxification, the midgut, Malpighian tubules, and the fat body. This study provides a significant example of how changes in tissue-specific gene expression caused by transposable-element insertions can contribute to adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Characterization of Drosophila melanogaster cytochrome P450 genes

Henry Chung; Tamar Sztal; Shivani Pasricha; Mohan Sridhar; Philip Batterham; Phillip J. Daborn

Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification.


Insect Biochemistry and Molecular Biology | 2003

Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila

G. Le Goff; Sam Boundy; Phillip J. Daborn; J. L. Yen; L. Sofer; R. Lind; C. Sabourault; L. Madi-Ravazzi; Richard H. ffrench-Constant

Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different P450 genes such as Cyp12d1 and Cyp6a8 can also be selected using DDT in the laboratory. We also show, however, that a homolog of Cyp6g1 is over-expressed in a field resistant strain of D. simulans. In order to determine why Cyp6g1 is so widely selected in the field we examine the pattern of cross-resistance of both resistant strains and transgenic flies over-expressing Cyp6g1 alone. We show that all three DDT selected P450s can confer resistance to the neonicotinoid imidacloprid but that Cyp6a8 confers no cross-resistance to malathion. Transgenic flies over-expressing Cyp6g1 also show cross-resistance to other neonicotinoids such as acetamiprid and nitenpyram. We suggest that the broad level of cross-resistance shown by Cyp6g1 may have facilitated its selection as a resistance gene in natural Drosophila populations.


Molecular Ecology | 2004

World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster

Francesco Catania; M. O. Kauer; Phillip J. Daborn; J. L. Yen; Richard H. ffrench-Constant; Christian Schlötterer

Previous work showed that insecticide resistance in Drosophila melanogaster is correlated with the insertion of an Accord‐like element into the 5′ region of the cytochrome P450 gene, Cyp6g1. Here, we study the distribution of the Accord‐like element in 673 recently collected D. melanogaster lines from 34 world‐wide populations. We also examine the extent of microsatellite variability along a 180‐kilobase (kb) genomic region of chromosome II encompassing the resistance gene. We confirm a 100% correlation of the Accord insertion with insecticide resistance and a significant reduction in variability extending at least 20 kb downstream of the Cyp6g1 gene. The frequency of the Accord insertion differs significantly between East African (32–55%) and nonAfrican (85–100%) populations. This pattern is consistent with a selective sweep driving the Accord insertion close to fixation in nonAfrican populations as a result of the insecticide resistance phenotype it confers. This study confirms that hitchhiking mapping can be used to identify beneficial mutations in natural populations.


Cellular Microbiology | 2002

Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta

Carlos P. Silva; Nicholas R. Waterfield; Phillip J. Daborn; Paul Dean; Timothy Chilver; Candy P. Y. Au; Sadhana Sharma; Ursula Potter; Stuart E. Reynolds; Richard H. ffrench-Constant

Invertebrates, including insects, are being developed as model systems for the study of bacterial virulence. However, we understand little of the interaction between bacteria and specific invertebrate tissues or the immune system. To establish an infection model for Photorhabdus, which is released directly into the insect blood system by its nematode symbiont, we document the number and location of recoverable bacteria found during infection of Manduca sexta. After injection into the insect larva, P. luminescens multiplies in both the midgut and haemolymph, only later colonizing the fat body and the remaining tissues of the cadaver. Bacteria persist by suppressing haemocyte‐mediated phagocytosis and culture supernatants grown in vitro, as well as plasma from infected insects, suppress phagocytosis of P. luminescens. Using GFP‐labelled bacteria, we show that colonization of the gut begins at the anterior of the midgut and proceeds posteriorly. Within the midgut, P. luminescens occupies a specific niche between the extracellular matrix and basal membrane (lamina) of the folded midgut epithelium. Here, the bacteria express the gut‐active Toxin complex A (Tca) and an RTX‐like metalloprotease PrtA. This close association of the bacteria with the gut, and the production of toxins and protease, triggers a massive programmed cell death of the midgut epithelium.


Journal of Bacteriology | 2001

Measuring Virulence Factor Expression by the Pathogenic Bacterium Photorhabdus luminescens in Culture and during Insect Infection

Phillip J. Daborn; Nicholas R. Waterfield; Mark A. Blight; Richard H. ffrench-Constant

During insect infection Photorhabdus luminescens emits light and expresses virulence factors, including insecticidal toxin complexes (Tcs) and an RTX-like metalloprotease (Prt). Using quantitative PCR and protein assays, we describe the expression patterns of these factors both in culture and during insect infection and compare them to the associated bacterial growth curves. In culture, light and active Prt protease are produced in stationary phase. Tca also appears in stationary phase, whereas Tcd is expressed earlier. These patterns seen in a culture flask are strikingly similar to those observed during insect infection. Thus, in an infected insect, bacteria grow exponentially until the time of insect death at approximately 48 h, when both light and the virulence factors Prt protease and Tca are produced. In contrast, Tcd appears much earlier in insect infection. However, at present, the biological significance of this difference in timing of the production of the two toxins in unclear. This is the first documentation of the expression of Tcs and Prt in an insect and highlights the malleability of Photorhabdus as a model system for bacterial infection.


Developmental Biology | 2011

CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis.

Emilie Guittard; Catherine Blais; Annick Maria; Jean-Philippe Parvy; Shivani Pasricha; Christopher Lumb; René Lafont; Phillip J. Daborn; Chantal Dauphin-Villemant

Ecdysteroids are steroid hormones, which coordinate major developmental transitions in insects. Both the rises and falls in circulating levels of active hormones are important for coordinating molting and metamorphosis, making both ecdysteroid biosynthesis and inactivation of physiological relevance. We demonstrate that Drosophila melanogaster Cyp18a1 encodes a cytochrome P450 enzyme (CYP) with 26-hydroxylase activity, a prominent step in ecdysteroid catabolism. A clear ortholog of Cyp18a1 exists in most insects and crustaceans. When Cyp18a1 is transfected in Drosophila S2 cells, extensive conversion of 20-hydroxyecdysone (20E) into 20-hydroxyecdysonoic acid is observed. This is a multi-step process, which involves the formation of 20,26-dihydroxyecdysone as an intermediate. In Drosophila larvae, Cyp18a1 is expressed in many target tissues of 20E. We examined the consequences of Cyp18a1 inactivation on Drosophila development. Null alleles generated by excision of a P element and RNAi knockdown of Cyp18a1 both result in pupal lethality, possibly as a consequence of impaired ecdysteroid degradation. Our data suggest that the inactivation of 20E is essential for proper development and that CYP18A1 is a key enzyme in this process.

Collaboration


Dive into the Phillip J. Daborn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Chung

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge