Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip Kim is active.

Publication


Featured researches published by Phillip Kim.


Science Translational Medicine | 2013

mTORC1 Inhibition Is Required for Sensitivity to PI3K p110α Inhibitors in PIK3CA-Mutant Breast Cancer

Moshe Elkabets; Sadhna Vora; Dejan Juric; Natasha Morse; Mari Mino-Kenudson; Taru A. Muranen; Jessica J. Tao; Ana Bosch Campos; Jordi Rodon; Yasir H. Ibrahim; Violeta Serra; Vanessa Rodrik-Outmezguine; Saswati Hazra; Sharat Singh; Phillip Kim; Cornelia Quadt; Manway Liu; Alan Huang; Neal Rosen; Jeffrey A. Engelman; Maurizio Scaltriti; José Baselga

Persistent mTORC1 signaling correlates with resistance to PI3K p110α inhibition in breast cancer, which can be overcome by inhibiting mTORC1. Caveat mTOR In recent years, numerous new drugs have been developed to take advantage of specific molecular changes in cancer cells. Unfortunately, tumors are often a step ahead of the scientists, becoming resistant to these targeted drugs just when they seem to be working perfectly. Now, two groups of researchers have developed rational combination treatments that block resistance to targeted cancer drugs by inhibiting mTOR. Elkabets and coauthors were working on breast cancer, where the PIK3CA gene is frequently mutated. Inhibitors of PI3K (the protein product of PIK3CA) are currently in clinical trials, but some of the cancers are resistant to these drugs. The authors have discovered that breast cancers resistant to the PI3K inhibitor BYL719 had persistently active mTOR signaling, both in cultured cell lines and in patient tumors. Adding an mTOR inhibitor to the treatment regimen could reverse the resistance and kill the tumor cells. Corcoran et al. found a similar mTOR-dependent drug resistance mechanism to be active in melanoma as well. BRAF-mutant melanomas, the most common type, are frequently treated with RAF and MEK inhibitors, but only with mixed results, because melanomas quickly develop resistance to these drugs. Now, the authors have shown that drug-resistant melanomas also have persistent activation of mTOR, and adding an mTOR inhibitor to the treatment regimen can block drug resistance and kill the cancer cells. In both studies, the activation of mTOR in drug-resistant tumors has been confirmed in human patients, but the combination treatments have only been tested in cells and in mouse models thus far. Thus, the next critical step would be to confirm that adding mTOR inhibition to treatment regimens for these cancers is effective in the clinical setting as well. Some mTOR inhibitors are already available for use in patients, so hopefully soon mTOR activation will not be something to beware of, but something to monitor and target with specific drugs. Activating mutations of the PIK3CA gene occur frequently in breast cancer, and inhibitors that are specific for phosphatidylinositol 3-kinase (PI3K) p110α, such as BYL719, are being investigated in clinical trials. In a search for correlates of sensitivity to p110α inhibition among PIK3CA-mutant breast cancer cell lines, we observed that sensitivity to BYL719 (as assessed by cell proliferation) was associated with full inhibition of signaling through the TORC1 pathway. Conversely, cancer cells that were resistant to BYL719 had persistently active mTORC1 signaling, although Akt phosphorylation was inhibited. Similarly, in patients, pS6 (residues 240/4) expression (a marker of mTORC1 signaling) was associated with tumor response to BYL719, and mTORC1 was found to be reactivated in tumors from patients whose disease progressed after treatment. In PIK3CA-mutant cancer cell lines with persistent mTORC1 signaling despite PI3K p110α blockade (that is, resistance), the addition of the allosteric mTORC1 inhibitor RAD001 to the cells along with BYL719 resulted in reversal of resistance in vitro and in vivo. Finally, we found that growth factors such as insulin-like growth factor 1 and neuregulin 1 can activate mammalian target of rapamycin (mTOR) and mediate resistance to BYL719. Our findings suggest that simultaneous administration of mTORC1 inhibitors may enhance the clinical activity of p110α-targeted drugs and delay the appearance of resistance.


Science Signaling | 2014

Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

Jessica J. Tao; Pau Castel; Nina Radosevic-Robin; Moshe Elkabets; Neil Auricchio; Nicola Aceto; Gregory Weitsman; Paul R. Barber; Borivoj Vojnovic; Haley Ellis; Natasha Morse; Nerissa Viola-Villegas; Ana Bosch; Dejan Juric; Saswati Hazra; Sharat Singh; Phillip Kim; Anna Bergamaschi; Shyamala Maheswaran; Tony Ng; Frédérique Penault-Llorca; Jason S. Lewis; Lisa A. Carey; Charles M. Perou; José Baselga; Maurizio Scaltriti

Predictions regarding drug resistance mechanisms and treatment strategies in triple-negative breast cancer are confirmed in tumors from patients. From Models to Breast Cancer Treatments Patients with triple-negative breast cancer (TNBC), a particularly aggressive form, have few treatment options. Targeting either the phosphatidylinositol 3-kinase to Akt (PI3K-Akt) pathway or epidermal growth factor receptor (EGFR) inhibits tumor growth in some patients, but durable responses are rare. Modeling studies using cell lines predict that the EGFR family member HER3 (human epidermal growth factor receptor 3) may confer drug resistance. Now, Tao et al. provide evidence from patient tumors to support those predictions. Treatment with PI3K-Akt pathway inhibitors increased the abundance of both total and activated HER3 in TNBC cells in culture and TNBC xenografts in mice. Residual tumors from patients treated with EGFR inhibitors had increased abundance and activation of HER3. Combining inhibitors of the PI3K-Akt pathway with a dual inhibitor of EGFR and HER3 substantially suppressed tumor growth in mice with TNBC xenografts derived from either cell lines or patients, suggesting that this combined strategy may improve therapeutic outcome in TNBC patients. Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.


PLOS ONE | 2013

A novel proteomics-based clinical diagnostics technology identifies heterogeneity in activated signaling pathways in gastric cancers.

Jeeyun Lee; Sung Kim; Phillip Kim; Xinjun Liu; Tani Lee; Kyoung-Mee Kim; In-Gu Do; Joon Oh Park; Se Hoon Park; Jiryeon Jang; Nicholas Hoe; Gulia Harvie; Anne Kuller; Anjali Jain; Gary Meyer; Glen Leesman; Young Suk Park; Min Gew Choi; Tae Sung Sohn; Jae Moon Bae; Ho Yeong Lim; Sharat Singh; Won Ki Kang

Purpose The aim of this study was to utilize the proteomics-based Collaborative Enzyme Enhanced Reactive (CEER) immunoassay to investigate protein tyrosine phosphorylations as diagnostic markers in gastric cancers (GCs). Experimental Design Protein lysates from fresh-frozen 434 advanced stage GCs were analyzed for phosphorylation of HER1, HER2, p95HER2, HER3, cMET, IGF1R and PI3K. The pathway activation patterns were segregated based on the tumor HER2 status. Hierarchical clustering was utilized to determine pathway coactivations in GCs. Prognostic value of pathway activation patterns was determined by correlating disease-free survival times of the various GC subgroups using Kaplan-Meier survival analysis. CEER was also used to determine the presence of tyrosine phosphorylated signaling cascades in circulating tumor cells (CTCs) and ascites tumor cells (ATCs). Results Utilizing a novel diagnostics immunoassay, CEER, we demonstrate the presence of p95HER2 and concomitantly activated signaling pathways in GC tumor tissues, CTCs and ATCs isolated from GC patients for the first time. p95HER2 is expressed in ∼77% of HER2(+) GCs. Approximately 54% of GCs have an activated HER1, HER2, HER3, cMET or IGF1R and demonstrate a poorer prognosis than those where these receptor tyrosine kinases (RTKs) are not activated. Hierarchical clustering of RTKs reveals co-clustering of phosphorylated HER1:cMET, HER2:HER3 and IGF1R-PI3K. Coactivation of HER1 with cMET renders GCs with a shorter disease-free survival as compared to only cMET activated GCs. Conclusions Our study highlights the utility of a novel companion diagnostics technology, CEER that has strong implications for drug development and therapeutic monitoring. CEER is used to provide an increased understanding of activated signaling pathways in advanced GCs that can significantly improve their clinical management through accurate patient selection for targeted therapeutics.


PLOS ONE | 2014

Activated cMET and IGF1R-Driven PI3K Signaling Predicts Poor Survival in Colorectal Cancers Independent of KRAS Mutational Status

Jeeyun Lee; Anjali Jain; Phillip Kim; Tani Ann Lee; Anne Kuller; Fred Princen; In-Gu; Suk Hyeong Kim; Joon Oh Park; Yong Seog Park; Sharat Singh; Hee Cheol Kim

Background Oncogenic mutational analysis provides predictive guidance for therapeutics such as anti-EGFR antibodies, but it is successful only for a subset of colorectal cancer (CRC) patients. Method A comprehensive molecular profiling of 120 CRC patients, including 116 primary, 15 liver metastasis, and 1 peritoneal seeding tissue samples was performed to identify the relationship between v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) WT and mutant CRC tumors and clinical outcomes. This included determination of the protein activation patterns of human epidermal receptor 1 (HER1), HER2, HER3, c-MET, insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositide 3-kinase (PI3K), Src homology 2 domain containing (Shc), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) kinases using multiplexed collaborative enzyme enhanced reactive (CEER) immunoassay. Results KRAS WT and mutated CRCs were not different with respect to the expression of the various signaling molecules. Poor prognosis in terms of early relapse (<2 years) and shorter disease-free survival (DFS) correlated with enhanced activation of PI3K signaling relative to the HER kinase pathway signaling, but not with the KRAS mutational status. KRAS WT CRCs were identified as a mixed prognosis population depending on their level of PI3K signaling. KRAS WT CRCs with high HER1/c-MET index ratio demonstrated a better DFS post-surgery. c-MET and IGF1R activities relative to HER axis activity were considerably higher in early relapse CRCs, suggesting a role for these alternative receptor tyrosine kinases (RTKs) in driving high PI3K signaling. Conclusions The presented data subclassified CRCs based on their activated signaling pathways and identify a role for c-MET and IGF1R-driven PI3K signaling in CRCs, which is superior to KRAS mutational tests alone. The results from this study can be utilized to identify aggressive CRCs, explain failure of currently approved therapeutics in specific CRC subsets, and, most importantly, generate hypotheses for pathway-guided therapeutic strategies that can be tested clinically.


Cardiovascular diagnosis and therapy | 2014

Coronary CTA using scout-based automated tube potential and current selection algorithm, with breast displacement results in lower radiation exposure in females compared to males

Harshna Vadvala; Phillip Kim; Thomas Mayrhofer; Oleg S. Pianykh; Mannudeep K. Kalra; Udo Hoffmann; Brian B. Ghoshhajra

PURPOSE To evaluate the effect of automatic tube potential selection and automatic exposure control combined with female breast displacement during coronary computed tomography angiography (CCTA) on radiation exposure in women versus men of the same body size. MATERIALS AND METHODS Consecutive clinical exams between January 2012 and July 2013 at an academic medical center were retrospectively analyzed. All examinations were performed using ECG-gating, automated tube potential, and tube current selection algorithm (APS-AEC) with breast displacement in females. Cohorts were stratified by sex and standard World Health Organization body mass index (BMI) ranges. CT dose index volume (CTDIvol), dose length product (DLP) median effective dose (ED), and size specific dose estimate (SSDE) were recorded. Univariable and multivariable regression analyses were performed to evaluate the effect of gender on radiation exposure per BMI. RESULTS A total of 726 exams were included, 343 (47%) were females; mean BMI was similar by gender (28.6±6.9 kg/m(2) females vs. 29.2±6.3 kg/m(2) males; P=0.168). Median ED was 2.3 mSv (1.4-5.2) for females and 3.6 (2.5-5.9) for males (P<0.001). Females were exposed to less radiation by a difference in median ED of -1.3 mSv, CTDIvol -4.1 mGy, and SSDE -6.8 mGy (all P<0.001). After adjusting for BMI, patient characteristics, and gating mode, females exposure was lower by a median ED of -0.7 mSv, CTDIvol -2.3 mGy, and SSDE -3.15 mGy, respectively (all P<0.01). CONCLUSIONS We observed a difference in radiation exposure to patients undergoing CCTA with the combined use of AEC-APS and breast displacement in female patients as compared to their BMI-matched male counterparts, with female patients receiving one third less exposure.


Clinical Cancer Research | 2017

HER2-overexpressing breast cancers amplify FGFR signaling upon acquisition of resistance to dual therapeutic blockade of HER2

Ariella B. Hanker; Joan T. Garrett; Monica V. Estrada; Preston D. Moore; Paula I. Gonzalez Ericsson; James P. Koch; Emma Langley; Sharat Singh; Phillip Kim; Garrett Michael Frampton; Eric M. Sanford; Philip Owens; Jennifer Becker; M. Reid Groseclose; Stephen Castellino; Heikki Joensuu; Jens Huober; Jan C. Brase; Samira Majjaj; Sylvain Brohée; David Venet; David Norman Brown; José Baselga; Martine Piccart; Christos Sotiriou; Carlos L. Arteaga

Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or pertuzumab has been shown to be superior to single-agent trastuzumab. However, a significant fraction of HER2-overexpressing (HER2+) breast cancers escape from these drug combinations. In this study, we sought to discover the mechanisms of acquired resistance to the combination of lapatinib + trastuzumab. Experimental Design: HER2+ BT474 xenografts were treated with lapatinib + trastuzumab long-term until resistance developed. Potential mechanisms of acquired resistance were evaluated in lapatinib + trastuzumab-resistant (LTR) tumors by targeted capture next-generation sequencing. In vitro experiments were performed to corroborate these findings, and a novel drug combination was tested against LTR xenografts. Gene expression and copy-number analyses were performed to corroborate our findings in clinical samples. Results: LTR tumors exhibited an increase in FGF3/4/19 copy number, together with an increase in FGFR phosphorylation, marked stromal changes in the tumor microenvironment, and reduced tumor uptake of lapatinib. Stimulation of BT474 cells with FGF4 promoted resistance to lapatinib + trastuzumab in vitro. Treatment with FGFR tyrosine kinase inhibitors reversed these changes and overcame resistance to lapatinib + trastuzumab. High expression of FGFR1 correlated with a statistically shorter progression-free survival in patients with HER2+ early breast cancer treated with adjuvant trastuzumab. Finally, FGFR1 and/or FGF3 gene amplification correlated with a lower pathologic complete response in patients with HER2+ early breast cancer treated with neoadjuvant anti-HER2 therapy. Conclusions: Amplification of FGFR signaling promotes resistance to HER2 inhibition, which can be diminished by the combination of HER2 and FGFR inhibitors. Clin Cancer Res; 23(15); 4323–34. ©2017 AACR.


Oncotarget | 2015

Low EGFR/MET ratio is associated with resistance to EGFR inhibitors in non-small cell lung cancer

Silvia Park; Emma Langley; Jong-Mu Sun; Steve Lockton; Jin Seok Ahn; Anjali Jain; Keunchil Park; Sharat Singh; Phillip Kim; Myung-Ju Ahn

Purpose Although activating mutations in the epidermal growth factor receptor (EGFR) gene are predictive markers for response to EGFR inhibitors, 30–40% of EGFR-mutant non-small cell lung cancer (NSCLC) patients are de novo non-responders. Hence, we sought to explore additional biomarkers of response. Methods We conducted a prospective pilot study to characterize the expression and/or activation of key receptor tyrosine kinases (RTKs) in stage IIIB-IV NSCLC tumors. A total of 37 patients were enrolled and 34 underwent EGFR inhibitor treatment. Results As expected, patients bearing activating EGFR mutations showed increased progression free survival (PFS) compared to patients with wild-type EGFR status (9.3 vs 1.4 months, p = 0.0629). Analysis of baseline tumor RTK profiles revealed that, regardless of EGFR mutation status, higher levels of EGFR relative to MET correlated with longer PFS. At multiple EGFR/MET ratio cut-offs, including 1, 2 and 3, median PFS according to below vs. above cut-offs were 0.4 vs. 6.1 (p = 0.0001), 0.5 vs. 9.3 (p = 0.0006) and 1.0 vs. 11.2 months (p = 0.0008), respectively. Conclusion The EGFR/MET ratio measured in tumors at baseline may help identify NSCLC patients most likely to benefit from prolonged PFS when treated with EGFR inhibitors.


Journal of Thoracic Imaging | 2016

Coronary-Pulmonary Artery Fistulas: A Systematic Review

Daniel Verdini; Daniel Vargas; Anderson H. Kuo; Brian B. Ghoshhajra; Phillip Kim; Horacio Murillo; Jacobo Kirsch; Michael Lane; Carlos S. Restrepo

Purpose: Coronary-pulmonary arterial fistulas (CPAFs) are rare coronary artery anomalies that have been described only in limited case reports. This study aims to evaluate the clinical presentation and imaging findings of CPAFs collected from 6 participating medical centers along with CPAFs reported in the literature, to discern any general trends present in CPAFs. Materials and Methods: A total of 25 cases of CPAF diagnosed by coronary computed tomography angiography were collected across 6 participating institutions. In addition, utilizing a PubMed literature search, 78 additional CPAF cases were obtained. The imaging findings and relevant clinical history were reviewed. Results: Of the 103 CPAF patients, 60 (63% of patients with sex known) were male, with ages ranging from newborn to 88 years (mean=46.1 y). The most common symptoms reported were chest pain (n=40, 39%) and dyspnea (n=26, 25%), with a murmur as the most common physical examination finding (n=38, 37%). The most common coronary artery of origin for a CPAF was the left main/left anterior descending (n=87, 84%), followed by the right coronary artery (n=39, 38%). The fistula most commonly terminated in the main pulmonary artery (n=92, 89%). Multiple CPAFs were present in 46 cases (45%). Coronary artery aneurysms were identified in 20 cases (19%). Pediatric CPAF cases were usually associated with pulmonary atresia with ventricular septal defect. Conclusions: CPAFs are seen in a variety of clinical settings, from infants with advanced congenital heart disease to elderly patients who have undergone revascularization surgery. Although coronary artery fistulas have previously been described as rarely involving multiple coronary arteries, with the right coronary artery being most often involved, our series demonstrates that multiple fistulas are commonly present, with the most common pattern being between the left main/left anterior descending and the main pulmonary trunk.


Journal of Medical Internet Research | 2016

Medical Registry Data Collection Efficiency: A Crossover Study Comparing Web-Based Electronic Data Capture and a Standard Spreadsheet.

Pedro V. Staziaki; Phillip Kim; Harshna Vadvala; Brian B. Ghoshhajra

Background Electronic medical records and electronic data capture (EDC) have changed data collection in clinical and translational research. However, spreadsheet programs, such as Microsoft Excel, are still used as data repository to record and organize patient data for research. Objective The objective of this study is to assess the efficiency of EDC as against a standard spreadsheet in regards to time to collect data and data accuracy, measured in number of errors after adjudication. Methods This was a crossover study comparing the time to collect data in minutes between EDC and a spreadsheet. The EDC tool used was Research Electronic Data Capture (REDCap), whereas the spreadsheet was Microsoft Excel. The data collected was part of a registry of patients who underwent coronary computed tomography angiography in the emergency setting. Two data collectors with the same experience went over the same patients and collected relevant data on a case report form identical to the one used in our Emergency Department (ED) registry. Data collection tool was switched after the patient that represented half the cohort. For this, the patient cohort was exactly 30 days of our ED coronary Computed Tomography Angiography registry and the point of crossover was determined beforehand to be 15 days. We measured the number of patients admitted, and time to collect data. Accuracy was defined as absence of blank fields and errors, and was assessed by comparing data between data collectors and counting every time the data differed. Statistical analysis was made using paired t -test. Results The study included 61 patients (122 observations) and 55 variables. The crossover occurred after the 30th patient. Mean time to collect data using EDC in minutes was 6.2±2.3, whereas using Excel was 8.0±2.0 (P <.001), a difference of 1.8 minutes between both means (22%). The cohort was evenly distributed with 3 admissions in the first half of the crossover and 4 in the second half. We saw 2 (<0.1%) continuous variable typos in the spreadsheet that a single data collector made. There were no blank fields. The data collection tools showed no differences in accuracy of data on comparison. Conclusions Data collection for our registry with an EDC tool was faster than using a spreadsheet, which in turn allowed more efficient follow-up of cases.


Oncotarget | 2017

A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma

Kian-Huat Lim; Emma Langley; Feng Gao; Jingqin Luo; Lin Li; Gary Meyer; Phillip Kim; Sharat Singh; Vladamir M. Kushnir; Dayna S. Early; Steven A. Edmundowicz; Sachin Wani; Faris Murad; Dengfeng Cao; Riad R. Azar; Andrea Wang-Gillam

To date, targeted therapy for pancreatic ductal adenocarcinoma (PDAC) remains largely unsuccessful in the clinic. Current genomics-based technologies are unable to reflect the quantitative, dynamic signaling changes in the tumor, and require larger tumor samples that are difficult to obtain in PDAC patients. Therefore, a highly sensitive functional tool that can reliably and comprehensively inform intra-tumoral signaling events is direly needed to guide treatment decision. We tested the utility of a highly sensitive proteomics-based functional diagnostic platform, Collaborative Enzyme Enhanced Reactive-immunoassay (CEERTM), on fine-needle aspiration (FNA) samples obtained from 102 patients with radiographically-evident pancreatic tumors. Two FNA passes were collected from each patient, hybridized to customized chips coated with an array of capture antibodies, and detected using two enzyme-conjugated antibodies which emit quantifiable signals. We demonstrate that this technique is highly sensitive in detecting total and phosphorylated forms of multiple signaling molecules in FNA specimens, with reasonable correlation of marker intensities between two different FNA passes. Notably, signals of several markers were significantly higher in PDAC compared to non-cancerous samples. In PDAC samples, we found high total c-Met signal to be associated with poor survival, and confirmed this finding using an independent PDAC tissue microarray.

Collaboration


Dive into the Phillip Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge