Phillip Lamoureux
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phillip Lamoureux.
Journal of Cell Biology | 2002
Phillip Lamoureux; Gordon Ruthel; Robert E. Buxbaum; Steven R. Heidemann
Here we asked whether applied mechanical tension would stimulate undifferentiated minor processes of cultured hippocampal neurons to become axons and whether tension could induce a second axon in an already polarized neuron. Experimental tension applied to minor processes produced extensions that demonstrated axonal character, regardless of the presence of an existing axon. Towed neurites showed a high rate of spontaneous growth cone advance and could continue to grow out for 1–3 d after towing. The developmental course of experimental neurites was found to be similar to that of unmanipulated spontaneous axons. Furthermore, the experimentally elongated neurites showed compartmentation of the axonal markers dephospho-tau and L-1 in towed outgrowth after 24 h. Extension of a second axon from an already polarized neuron does not lead to the loss of the spontaneous axon either immediately or after longer term growth. In addition, we were able to initiate neurites de novo that subsequently acquired axonal character even though spontaneous growth cone advance began while the towed neurite was still no longer than its sibling processes. This suggests that tension rather than the achievement of a critical neurite length determined axonal specification.
Biophysical Journal | 2008
Matthew O’Toole; Phillip Lamoureux; Kyle E. Miller
Whether the axonal framework is stationary or moves is a central debate in cell biology. To better understand this problem, we developed a mathematical model that incorporates force generation at the growth cone, the viscoelastic properties of the axon, and adhesions between the axon and substrate. Using force-calibrated needles to apply and measure forces at the growth cone, we used docked mitochondria as markers to monitor movement of the axonal framework. We found coherent axonal transport that decreased away from the growth cone. Based on the velocity profiles of movement and the force applied at the growth cone, and by varying the attachment of the axonal shaft to the coverslip, we estimate values for the axial viscosity of the axon (3 x 10(6) +/- 2.4 x 10(6) Pa.s) and the friction coefficient for laminin/polyornithine-based adhesions along the axon (9.6 x 10(3) +/- 7.5 x 10(3) Pa.s). Our model suggests that whether axons elongate by tip growth or stretching depends on the level of force generation at the growth cone, the viscosity of the axon, and the level of adhesions along the axon.
Developmental Neurobiology | 2010
Phillip Lamoureux; Steven R. Heidemann; Nathan R. Martzke; Kyle E. Miller
Mechanical tension is a particularly effective stimulus for axonal elongation, but little is known about how it leads to the formation of new axon. To better understand this process, we examined the movement of axonal branch points, beads bound to the axon, and docked mitochondria while monitoring axonal width. We found these markers moved in a pattern that suggests elongation occurs by viscoelastic stretching and volume addition along the axon. To test the coupling between “lengthening” and “growth,” we measured axonal width while forcing axons to grow and then pause by controlling the tension applied to the growth cone or to the cell body. We found axons thinned during high rates of elongation and thickened when the growth cones were stationary. These findings suggest that forces cause lengthening because they stretch the axon and that growth occurs, in a loosely coupled step, by volume addition along the axon.
Cell Biochemistry and Biophysics | 1997
Steven R. Heidemann; Phillip Lamoureux; Robert E. Buxbaum
AbstractMechanical tension is a robust regulator of axonal development of cultured neurons. We review work from our laboratory, using calibrated glass needles to measure or apply tension to chick sensory neurons, chick forebrain neurons, and rat PC12 cells. We survey direct evidence for two different regimes of tension effects on neurons, a fluid-like growth regime, and a nongrowth, elastic regime. Above a minimum tension threshold, we observe growth effects of tension regulating four phases of axonal development:1.Initiation of process outgrowth from the cell body;2.Growth cone-mediated elongation of the axon;3.Elongation of the axon after synaptogenesis, which normally accommodates the skeletal growth of vertebrates; and4.Axonal elimination by retraction. Significantly, the quantitative relationship between the force and the growth response is suprisingly similar to the simple relationship characteristic of Newtonian fluid mechanical elements: elongation rate is directly proportional to tension (above the threshold), and this robust linear relationship extends from physiological growth rates to far-above-physiological rates. Thus, tension apparently integrates the complex biochemistry of axonal elongation, including cytoskeletal and membrane dynamics, to produce a simple “force input/growth output” relationship. In addition to this fluid-like growth response, peripheral neurons show elastic behaviors at low tensions (below the threshold tension for growth), as do most cell types. Thus, neurites could exert small static forces without diminution for long periods. In addition, axons of peripheral neurons can actively generate modest tensions, presumably similar to muscle contraction, at tensions near zero. The elastic and force-generating capability of neural axons has recently been proposed to play a major role in the morphogenesis of the brain.
Journal of Cell Science | 2014
Douglas H. Roossien; Phillip Lamoureux; Kyle E. Miller
ABSTRACT During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through ‘stop-and-go’ transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Methods in Cell Biology | 2003
Steven R. Heidemann; Matthew Reynolds; Kha Ngo; Phillip Lamoureux
Dissociation of the forebrain of a single 8-day chick embryo produces > 10(7) neurons in nearly pure culture. Our methods allow 50-70% of these neurons to develop an axon and typical pyrimidal shape after 3-4 days in culture at low density (10(4) cells/cm2) by a stereotyped developmental sequence similar to that of rat hippocampal neurons. The culture method for chick forebrain neurons is unusually rapid, inexpensive, simple, and could be used in undergraduate laboratory exercises. The dissection and dissociation of the tissue are easy and rapid, requiring less than 30 min from cracking open the chicken egg to plating the cells. Axonal development by these neurons and growth for about a week do not require glial support. The neurons are grown on polylysine-treated culture surfaces in either CO2-dependent (Medium 199) or -independent (Liebovitz L15) media with 10% fetal bovine serum and a supplement based on the classic N2 supplement for neuronal culture.
Journal of Cell Science | 1991
Steven R. Heidemann; Phillip Lamoureux; Robert E. Buxbaum
Summary Following a brief review of the controversy concerning the physical mechanism of growth cone advance, we present cytomechanical data to support a version of the classic model of growth cone motility. In this model, the growth cone is pulled forward by filopodial tension. Observations of growth cone behavior and axonal guidance suggest that this model should include fluid flow mechanisms as well as the original solid, elastic mechanism. Recent data are reviewed on the similarity of the fluid behavior of cytoplasm and of suspensions of cytoskeletal filaments. The thixotropic behavior of cytoplasm is used to develop a model for lamellipodial protrusion caused by filopodial tension.
Biophysical Journal | 2015
Matthew O’Toole; Phillip Lamoureux; Kyle E. Miller
Forces are important for neuronal outgrowth during the initial wiring of the nervous system and after trauma, yet subcellular force generation over the microtubule-rich region at the rear of the growth cone and along the axon has never, to our knowledge, been directly measured. Because previous studies have indicated microtubule polymerization and the microtubule-associated proteins Kinesin-1 and dynein all generate forces that push microtubules forward, a major question is whether the net forces in these regions are contractile or expansive. A challenge in addressing this is that measuring local subcellular force generation is difficult. Here we develop an analytical mathematical model that describes the relationship between unequal subcellular forces arranged in series within the neuron and the net overall tension measured externally. Using force-calibrated towing needles to measure and apply forces, in combination with docked mitochondria to monitor subcellular strain, we then directly measure force generation over the rear of the growth cone and along the axon of chick sensory neurons. We find the rear of the growth cone generates 2.0 nN of contractile force, the axon generates 0.6 nN of contractile force, and that the net overall tension generated by the neuron is 1.3 nN. This work suggests that the forward bulk flow of the cytoskeletal framework that occurs during axonal elongation and growth-cone pauses arises because strong contractile forces in the rear of the growth cone pull material forward.
BMC Neuroscience | 2010
Phillip Lamoureux; Matthew R. O'Toole; Steven R. Heidemann; Kyle E. Miller
BackgroundAs we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood.ResultsTo investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour). To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness) and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons.ConclusionsTaken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.
PLOS ONE | 2013
Douglas H. Roossien; Phillip Lamoureux; David Van Vactor; Kyle E. Miller
In vitro studies conducted in Aplysia and chick sensory neurons indicate that in addition to microtubule assembly, long microtubules in the C-domain of the growth cone move forward as a coherent bundle during axonal elongation. Nonetheless, whether this mode of microtubule translocation contributes to growth cone motility in vivo is unknown. To address this question, we turned to the model system Drosophila. Using docked mitochondria as fiduciary markers for the translocation of long microtubules, we first examined motion along the axon to test if the pattern of axonal elongation is conserved between Drosophila and other species in vitro. When Drosophila neurons were cultured on Drosophila extracellular matrix proteins collected from the Drosophila Kc167 cell line, docked mitochondria moved in a pattern indicative of bulk microtubule translocation, similar to that observed in chick sensory neurons grown on laminin. To investigate whether the C-domain is stationary or advances in vivo, we tracked the movement of mitochondria during elongation of the aCC motor neuron in stage 16 Drosophila embryos. We found docked mitochondria moved forward along the axon shaft and in the growth cone C-domain. This work confirms that the physical mechanism of growth cone advance is similar between Drosophila and vertebrate neurons and suggests forward translocation of the microtubule meshwork in the axon underlies the advance of the growth cone C-domain in vivo. These results highlight the need for incorporating en masse microtubule translocation, in addition to assembly, into models of axonal elongation.